IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i4p1193-1197.html
   My bibliography  Save this article

Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method

Author

Listed:
  • Yusufoğlu, E.
  • Bekir, A.
  • Alp, M.

Abstract

In this paper, we establish exact solutions for nonlinear evolution equations. The sine–cosine method is used to construct periodic and solitary wave solutions of the Kawahara and modified Kawahara equations. These solutions may be important of significance for the explanation of some practical physical problems.

Suggested Citation

  • Yusufoğlu, E. & Bekir, A. & Alp, M., 2008. "Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1193-1197.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:4:p:1193-1197
    DOI: 10.1016/j.chaos.2006.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906009830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wazwaz, Abdul-Majid, 2006. "Two reliable methods for solving variants of the KdV equation with compact and noncompact structures," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 454-462.
    2. Wazwaz, Abdul-Majid & Helal, M.A., 2005. "Nonlinear variants of the BBM equation with compact and noncompact physical structures," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 767-776.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    2. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    3. Devi, Munesh & Yadav, Shalini & Arora, Rajan, 2021. "Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    4. Korkmaz, Alper & Dağ, İdris, 2009. "Crank-Nicolson – Differential quadrature algorithms for the Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 65-73.
    5. Petropoulou, Eugenia N. & Siafarikas, Panayiotis D. & Stabolas, Ioannis D., 2009. "Analytic bounded travelling wave solutions of some nonlinear equations II," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 803-810.
    6. Çulha Ünal, Sevil & Daşcıoğlu, Ayşegül & Varol Bayram, Dilek, 2020. "New exact solutions of space and time fractional modified Kawahara equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. He, Dongdong & Pan, Kejia, 2015. "A linearly implicit conservative difference scheme for the generalized Rosenau–Kawahara-RLW equation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 323-336.
    8. El-Tantawy, S.A. & Salas, Alvaro H. & Alharthi, M.R., 2021. "Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    10. Korkmaz, Alper, 2017. "Exact solutions of space-time fractional EW and modified EW equations," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 132-138.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavitha, L. & Prabhu, A. & Gopi, D., 2009. "New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2322-2329.
    2. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    3. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    4. Kuru, S., 2009. "Compactons and kink-like solutions of BBM-like equations by means of factorization," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 626-633.
    5. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    6. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    7. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    8. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    9. Estévez, P.G. & Kuru, Ş. & Negro, J. & Nieto, L.M., 2009. "Travelling wave solutions of the generalized Benjamin–Bona–Mahony equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2031-2040.
    10. Lv, Xiumei & Lai, Shaoyong & Wu, YongHong, 2009. "An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 82-90.
    11. Yang, Yanhong & Wang, Yushun & Song, Yongzhong, 2018. "A new local energy-preserving algorithm for the BBM equation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 119-130.
    12. Al-Mdallal, Qasem M. & Syam, Muhammad I., 2007. "Sine–Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1610-1617.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:4:p:1193-1197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.