IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v551y2020ics0378437120302545.html
   My bibliography  Save this article

New exact solutions of space and time fractional modified Kawahara equation

Author

Listed:
  • Çulha Ünal, Sevil
  • Daşcıoğlu, Ayşegül
  • Varol Bayram, Dilek

Abstract

One of the important nonlinear evolution equations in mathematical physics is the modified Kawahara equation. In this work, by utilizing an analytic method based on the Jacobi elliptic functions, a group of exact solutions of the fractional modified Kawahara equation had been found. The method can be applied to all of the time, space and space–time fractional equations. Four problems had also been given to demonstrate the application of the method and some solutions had been illustrated by the graphics.

Suggested Citation

  • Çulha Ünal, Sevil & Daşcıoğlu, Ayşegül & Varol Bayram, Dilek, 2020. "New exact solutions of space and time fractional modified Kawahara equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  • Handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120302545
    DOI: 10.1016/j.physa.2020.124550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120302545
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jang, Bongsoo, 2009. "New exact travelling wave solutions of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 646-654.
    2. Zhang, Dan, 2005. "Doubly periodic solutions of the modified Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1155-1160.
    3. Yusufoğlu, E. & Bekir, A. & Alp, M., 2008. "Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1193-1197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silambarasan, Rathinavel & Baskonus, Haci Mehmet & Vijay Anand, R. & Dinakaran, M. & Balusamy, Balamurugan & Gao, Wei, 2021. "Longitudinal strain waves propagating in an infinitely long cylindrical rod composed of generally incompressible materials and its Jacobi elliptic function solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 566-602.
    2. Bakıcıerler, Gizel & Alfaqeih, Suliman & Mısırlı, Emine, 2021. "Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    3. El-Tantawy, S.A. & Salas, Alvaro H. & Alharthi, M.R., 2021. "Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    2. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    3. Korkmaz, Alper, 2017. "Exact solutions of space-time fractional EW and modified EW equations," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 132-138.
    4. Zehra Pınar & Turgut Öziş, 2013. "The Periodic Solutions to Kawahara Equation by Means of the Auxiliary Equation with a Sixth-Degree Nonlinear Term," Journal of Mathematics, Hindawi, vol. 2013, pages 1-8, March.
    5. El-Tantawy, S.A. & Salas, Alvaro H. & Alharthi, M.R., 2021. "Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Fateme Torabi & Reza Pourgholi, 2023. "Application of sextic B-spline collocation method for solving inverse the modified Kawahara equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 649-662, June.
    7. Korkmaz, Alper & Dağ, İdris, 2009. "Crank-Nicolson – Differential quadrature algorithms for the Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 65-73.
    8. Devi, Munesh & Yadav, Shalini & Arora, Rajan, 2021. "Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    9. Petropoulou, Eugenia N. & Siafarikas, Panayiotis D. & Stabolas, Ioannis D., 2009. "Analytic bounded travelling wave solutions of some nonlinear equations II," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 803-810.
    10. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    11. He, Dongdong & Pan, Kejia, 2015. "A linearly implicit conservative difference scheme for the generalized Rosenau–Kawahara-RLW equation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 323-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120302545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.