IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i4p2159-2173.html
   My bibliography  Save this article

Einstein–Friedmann equation, nonlinear dynamics and chaotic behaviours

Author

Listed:
  • Tanaka, Yosuke
  • Nakano, Shingo
  • Ohta, Shigetoshi
  • Mori, Keisuke
  • Horiuchi, Tanji

Abstract

We have studied the Einstein–Friedmann equation [Case 1] on the basis of the bifurcation theory and shown that the chaotic behaviours in the Einstein–Friedmann equation [Case 1] are reduced to the pitchfork bifurcation and the homoclinic bifurcation. We have obtained the following results:

Suggested Citation

  • Tanaka, Yosuke & Nakano, Shingo & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Einstein–Friedmann equation, nonlinear dynamics and chaotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2159-2173.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2159-2173
    DOI: 10.1016/j.chaos.2009.03.205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanaka, Yosuke, 2007. "The mass spectrum of heavier hadrons and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 996-1007.
    2. Tanaka, Yosuke & Mizuno, Yuji & Kado, Tatsuhiko & Zhao, Hua-An, 2007. "Nonlinear dynamics in the relativistic field equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1054-1075.
    3. Tanaka, Yosuke, 2009. "Space–time symmetry violation, configuration mixing model and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1064-1072.
    4. Tanaka, Yosuke & Mizuno, Yuzi & Kado, Tatsuhiko, 2005. "Chaotic dynamics in the Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 407-422.
    5. Tanaka, Yosuke & Shudo, Takefumi & Yosinaga, Tetsutaro & Kimura, Hiroshi, 2008. "Relativistic field equations and nonlinear dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 941-949.
    6. Tanaka, Yosuke, 2006. "The mass spectrum of hadrons and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 851-863.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Yosuke & Mizuno, Yuji & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Nonlinear dynamics in the Einstein–Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 533-549.
    2. Tanaka, Yosuke & Shudo, Takefumi & Yosinaga, Tetsutaro & Kimura, Hiroshi, 2008. "Relativistic field equations and nonlinear dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 941-949.
    3. Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.
    4. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    5. Khastan, A. & Ivaz, K., 2009. "Numerical solution of fuzzy differential equations by Nyström method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 859-868.
    6. Ismat Beg & Shaban Sedghi & Nabi Shobe, 2013. "Fixed Point Theorems in Fuzzy Metric Spaces," International Journal of Analysis, Hindawi, vol. 2013, pages 1-4, January.
    7. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    8. Cho, Yeol Je & Sedghi, Shaban & Shobe, Nabi, 2009. "Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2233-2244.
    9. Abbasbandy, S. & Adabitabar Firozja, M., 2007. "Fuzzy linguistic model for interpolation," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 551-556.
    10. Saadati, R. & Sedghi, S. & Shobe, N., 2008. "Modified intuitionistic fuzzy metric spaces and some fixed point theorems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 36-47.
    11. Goudarzi, M. & Vaezpour, S.M. & Saadati, R., 2009. "On the intuitionistic fuzzy inner product spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1105-1112.
    12. Manchein, C. & Beims, M.W., 2008. "Instability of powers of the golden mean," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 246-251.
    13. Abbasbandy, S. & Otadi, M. & Mosleh, M., 2008. "Minimal solution of general dual fuzzy linear systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1113-1124.
    14. Soleimani-damaneh, M., 2008. "Fuzzy upper bounds and their applications," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 217-225.
    15. Abbasbandy, S. & Nieto, Juan J. & Alavi, M., 2005. "Tuning of reachable set in one dimensional fuzzy differential inclusions," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1337-1341.
    16. Sedghi, Shaban & Shobe, Nabi & Žikić-Došenović, Tatjana, 2009. "A common fixed point theorem in two complete fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2590-2596.
    17. Nieto, Juan J. & Rodríguez-López, Rosana, 2006. "Bounded solutions for fuzzy differential and integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1376-1386.
    18. El Naschie, M.S., 2009. "Curvature, Lagrangian and holonomy of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2163-2167.
    19. Tanaka, Yosuke & Mizuno, Yuji & Kado, Tatsuhiko & Zhao, Hua-An, 2007. "Nonlinear dynamics in the relativistic field equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1054-1075.
    20. Saadati, Reza & Razani, Abdolrahman & Adibi, H., 2007. "A common fixed point theorem in L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 358-363.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2159-2173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.