IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v36y2008i4p797-807.html
   My bibliography  Save this article

Application of fractal theory to top-coal caving

Author

Listed:
  • Xie, H.
  • Zhou, H.W.

Abstract

The experiences of underground coal mining in China show that coal in a thick hard coal seam with a hard roof, the so-called “double hard coal seam”, is difficult to be excavated by top-coal caving technique. In order to solve the problem, a top-coal weakening technique is proposed in this paper. In the present study, fractal geometry provides a new description of the fracture mechanism for blasting. By means of theoretical analysis of the relationship between the fractal dimension of blasting fragments and the dynamite specific energy, a mechanical model for describing the size distribution of top-coal and the dissipation of blasting energy is proposed. The theoretical results are in agreement with laboratory and in situ test results. Moreover, it is shown that the fractal dimension of coal fragments can be used as an index for optimizing the blasting parameters for a top-coal weakening technique.

Suggested Citation

  • Xie, H. & Zhou, H.W., 2008. "Application of fractal theory to top-coal caving," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 797-807.
  • Handle: RePEc:eee:chsofr:v:36:y:2008:i:4:p:797-807
    DOI: 10.1016/j.chaos.2006.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906007132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziaei, Ali Naghi & Keshavarzi, Ali Reza & Homayoun, Emdad, 2005. "Fractal scaling and simulation of velocity components and turbulent shear stress in open channel flow," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1031-1045.
    2. He, Chuanjiang & Xu, Xiaozeng & Yang, Jing, 2006. "Fast fractal image encoding using one-norm of normalised block," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1178-1186.
    3. Gnitecki, January & Moussavi, Zahra, 2005. "The fractality of lung sounds: A comparison of three waveform fractal dimension algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1065-1072.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu Li & Jialin Xu & Shengchao Yu & Jinfeng Ju & Jingmin Xu, 2018. "Mechanism and Prevention of a Chock Support Failure in the Longwall Top-Coal Caving Faces: A Case Study in Datong Coalfield, China," Energies, MDPI, vol. 11(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahlstrom, C. & Johansson, A. & Hult, P. & Ask, P., 2006. "Chaotic dynamics of respiratory sounds," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1054-1062.
    2. Gheisi, Ali Reza & Keshavarzi, Ali Reza, 2008. "Quantifying flow structure in vortex chamber using fractal dimension," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 314-321.
    3. Ana Gavrovska & Goran Zajić & Vesna Bogdanović & Irini Reljin & Branimir Reljin, 2017. "Identification of S1 and S2 Heart Sound Patterns Based on Fractal Theory and Shape Context," Complexity, Hindawi, vol. 2017, pages 1-9, November.
    4. Keshavarzi, Alireza & Gheisi, Alireza, 2007. "Three-dimensional fractal scaling of bursting events and their transition probability near the bed of vortex chamber," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 342-357.
    5. Zhou, Yi-Ming & Zhang, Chao & Zhang, Zeng-Ke, 2009. "An efficient fractal image coding algorithm using unified feature and DCT," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1823-1830.
    6. Salmasi, Mehrdad & Modarres-Hashemi, M., 2009. "Design and analysis of fractal detector for high resolution radars," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2133-2145.
    7. Das, Vikas Kumar & Debnath, Koustuv & Sivakumar, Bellie, 2022. "Does turbulence show fractal structure within a dynamic undercut of an alluvial riverbank?," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. He, Chuan-jiang & Li, Gao-ping & Shen, Xiao-na, 2007. "Interpolation decoding method with variable parameters for fractal image compression," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1429-1439.
    9. Chen, Zuoping & Ye, Zhenglin & Wang, Shuxun & Peng, Guohua, 2009. "Image magnification based on similarity analogy," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2370-2375.
    10. Chelsie Chia-Hsin Liu & Christina W. Tsai & Yu-Ying Huang, 2021. "Development of a Backward–Forward Stochastic Particle Tracking Model for Identification of Probable Sedimentation Sources in Open Channel Flow," Mathematics, MDPI, vol. 9(11), pages 1-35, May.
    11. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    12. Keshavarzi, Ali Reza & Ziaei, Ali Naghi & Homayoun, Emdad & Shirvani, Amin, 2005. "Fractal-Markovian scaling of turbulent bursting process in open channel flow," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 307-318.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:36:y:2008:i:4:p:797-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.