IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v25y2005i2p307-318.html
   My bibliography  Save this article

Fractal-Markovian scaling of turbulent bursting process in open channel flow

Author

Listed:
  • Keshavarzi, Ali Reza
  • Ziaei, Ali Naghi
  • Homayoun, Emdad
  • Shirvani, Amin

Abstract

The turbulent coherent structure of flow in open channel is a chaotic and stochastic process in nature. The coherence structure of the flow or bursting process consists of a series of eddies with a variety of different length scales and it is very important for the entrainment of sediment particles from the bed. In this study, a fractal-Markovian process is applied to the measured turbulent data in open channel. The turbulent data was measured in an experimental flume using three-dimensional acoustic Doppler velocity meter (ADV). A fractal interpolation function (FIF) algorithm was used to simulate more than 500,000 time series data of measured instantaneous velocity fluctuations and Reynolds shear stress. The fractal interpolation functions (FIF) enables to simulate and construct time series of u′, v′, and u′v′ for any particular movement and state in the Markov process. The fractal dimension of the bursting events is calculated for 16 particular movements with the transition probability of the events based on 1st order Markov process. It was found that the average fractal dimensions of the streamwise flow velocity (u′) are; 1.73, 1.74, 1.71 and 1.74 with the transition probability of 60.82%, 63.77%, 59.23% and 62.09% for the 1–1, 2–2, 3–3 and 4–4 movements, respectively. It was also found that the fractal dimensions of Reynold stress u′v′ for quadrants 1, 2, 3 and 4 are 1.623, 1.623, 1.625 and 1.618, respectively.

Suggested Citation

  • Keshavarzi, Ali Reza & Ziaei, Ali Naghi & Homayoun, Emdad & Shirvani, Amin, 2005. "Fractal-Markovian scaling of turbulent bursting process in open channel flow," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 307-318.
  • Handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:307-318
    DOI: 10.1016/j.chaos.2004.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790400712X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziaei, Ali Naghi & Keshavarzi, Ali Reza & Homayoun, Emdad, 2005. "Fractal scaling and simulation of velocity components and turbulent shear stress in open channel flow," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1031-1045.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    2. Keshavarzi, Alireza & Gheisi, Alireza, 2007. "Three-dimensional fractal scaling of bursting events and their transition probability near the bed of vortex chamber," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 342-357.
    3. Kalmár-Nagy, Tamás & Varga, Árpád, 2019. "Complexity analysis of turbulent flow around a street canyon," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 102-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gheisi, Ali Reza & Keshavarzi, Ali Reza, 2008. "Quantifying flow structure in vortex chamber using fractal dimension," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 314-321.
    2. Xie, H. & Zhou, H.W., 2008. "Application of fractal theory to top-coal caving," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 797-807.
    3. Keshavarzi, Alireza & Gheisi, Alireza, 2007. "Three-dimensional fractal scaling of bursting events and their transition probability near the bed of vortex chamber," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 342-357.
    4. Das, Vikas Kumar & Debnath, Koustuv & Sivakumar, Bellie, 2022. "Does turbulence show fractal structure within a dynamic undercut of an alluvial riverbank?," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Chelsie Chia-Hsin Liu & Christina W. Tsai & Yu-Ying Huang, 2021. "Development of a Backward–Forward Stochastic Particle Tracking Model for Identification of Probable Sedimentation Sources in Open Channel Flow," Mathematics, MDPI, vol. 9(11), pages 1-35, May.
    6. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:25:y:2005:i:2:p:307-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.