IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v29y2006i5p1054-1062.html
   My bibliography  Save this article

Chaotic dynamics of respiratory sounds

Author

Listed:
  • Ahlstrom, C.
  • Johansson, A.
  • Hult, P.
  • Ask, P.

Abstract

There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8+8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D2) and the Kaplan–Yorke dimension (DKY) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive.

Suggested Citation

  • Ahlstrom, C. & Johansson, A. & Hult, P. & Ask, P., 2006. "Chaotic dynamics of respiratory sounds," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1054-1062.
  • Handle: RePEc:eee:chsofr:v:29:y:2006:i:5:p:1054-1062
    DOI: 10.1016/j.chaos.2005.08.197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905007691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gnitecki, January & Moussavi, Zahra, 2005. "The fractality of lung sounds: A comparison of three waveform fractal dimension algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1065-1072.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karkare, Siddharth & Saha, Goutam & Bhattacharya, Joydeep, 2009. "Investigating long-range correlation properties in EEG during complex cognitive tasks," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2067-2073.
    2. Jun, Ma & Wu-Yin, Jin & Yan-Long, Li, 2008. "Chaotic signal-induced dynamics of degenerate optical parametric oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 494-499.
    3. Renjini, Ammini & Swapna, Mohanachandran Nair Sindhu & Satheesh Kumar, Krishnan Nair & Sankararaman, Sankaranarayana Iyer, 2023. "Time series and mel frequency analyses of wet and dry cough signals: A neural net classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    4. Raj, Vimal & Renjini, A. & Swapna, M.S. & Sreejyothi, S. & Sankararaman, S., 2020. "Nonlinear time series and principal component analyses: Potential diagnostic tools for COVID-19 auscultation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Gavrovska & Goran Zajić & Vesna Bogdanović & Irini Reljin & Branimir Reljin, 2017. "Identification of S1 and S2 Heart Sound Patterns Based on Fractal Theory and Shape Context," Complexity, Hindawi, vol. 2017, pages 1-9, November.
    2. Xie, H. & Zhou, H.W., 2008. "Application of fractal theory to top-coal caving," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 797-807.
    3. Salmasi, Mehrdad & Modarres-Hashemi, M., 2009. "Design and analysis of fractal detector for high resolution radars," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2133-2145.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:29:y:2006:i:5:p:1054-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.