IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i4p1429-1439.html
   My bibliography  Save this article

Interpolation decoding method with variable parameters for fractal image compression

Author

Listed:
  • He, Chuan-jiang
  • Li, Gao-ping
  • Shen, Xiao-na

Abstract

The interpolation fractal decoding method, which is introduced by [He C, Yang SX, Huang X. Progressive decoding method for fractal image compression. IEE Proc Vis Image Signal Process 2004;3:207–13], involves generating progressively the decoded image by means of an interpolation iterative procedure with a constant parameter. It is well-known that the majority of image details are added at the first steps of iterations in the conventional fractal decoding; hence the constant parameter for the interpolation decoding method must be set as a smaller value in order to achieve a better progressive decoding. However, it needs to take an extremely large number of iterations to converge. It is thus reasonable for some applications to slow down the iterative process at the first stages of decoding and then to accelerate it afterwards (e.g., at some iteration as we need). To achieve the goal, this paper proposed an interpolation decoding scheme with variable (iteration-dependent) parameters and proved the convergence of the decoding process mathematically. Experimental results demonstrate that the proposed scheme has really achieved the above-mentioned goal.

Suggested Citation

  • He, Chuan-jiang & Li, Gao-ping & Shen, Xiao-na, 2007. "Interpolation decoding method with variable parameters for fractal image compression," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1429-1439.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1429-1439
    DOI: 10.1016/j.chaos.2005.11.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905011586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Chuanjiang & Xu, Xiaozeng & Yang, Jing, 2006. "Fast fractal image encoding using one-norm of normalised block," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1178-1186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Fu-Jou & Huang, Yueh Min, 2009. "Probability- and curve-based fractal reconstruction on 2D DEM terrain profile," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 970-978.
    2. Chen, Zuoping & Ye, Zhenglin & Wang, Shuxun & Peng, Guohua, 2009. "Image magnification based on similarity analogy," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2370-2375.
    3. Lu, Jian & Ye, Zhongxing & Zou, Yuru & Ye, Ruisong, 2008. "An enhanced fractal image denoising algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1054-1064.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, H. & Zhou, H.W., 2008. "Application of fractal theory to top-coal caving," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 797-807.
    2. Chen, Zuoping & Ye, Zhenglin & Wang, Shuxun & Peng, Guohua, 2009. "Image magnification based on similarity analogy," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2370-2375.
    3. Zhou, Yi-Ming & Zhang, Chao & Zhang, Zeng-Ke, 2009. "An efficient fractal image coding algorithm using unified feature and DCT," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1823-1830.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1429-1439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.