IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v35y2008i2p263-267.html
   My bibliography  Save this article

Stability analysis of Cohen–Grossberg BAM neural networks with delays and impulses

Author

Listed:
  • Bai, Chuanzhi

Abstract

Based on the topological degree theory, Lyapunov functional method and some analysis techniques, the existence and global exponential stability of the equilibrium point of Cohen–Grossberg bidirectional associative memory neural networks with delays and impulses is first investigated. Two illustrative examples are given to demonstrate the effectiveness of the obtained results.

Suggested Citation

  • Bai, Chuanzhi, 2008. "Stability analysis of Cohen–Grossberg BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 263-267.
  • Handle: RePEc:eee:chsofr:v:35:y:2008:i:2:p:263-267
    DOI: 10.1016/j.chaos.2006.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906004838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.05.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping, Zhao Wu & Lu, Jun Guo, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 164-174.
    2. Shih, Chih-Wen & Tseng, Jui-Pin, 2009. "Global consensus for discrete-time competitive systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 302-310.
    3. Wen, Zhen & Sun, Jitao, 2009. "Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1829-1837.
    4. Li, Kelin & Zeng, Huanglin, 2010. "Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2329-2349.
    5. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2018. "Stability Analysis of Cohen–Grossberg Neural Networks with Random Impulses," Mathematics, MDPI, vol. 6(9), pages 1-12, August.
    6. Li, Chun-Hsien & Yang, Suh-Yuh, 2009. "Global attractivity in delayed Cohen–Grossberg neural network models," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1975-1987.
    7. Luo, Wenpin & Zhong, Shouming & Yang, Jun, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1084-1091.
    8. Gani Stamov & Ivanka Stamova & Stanislav Simeonov & Ivan Torlakov, 2020. "On the Stability with Respect to H-Manifolds for Cohen–Grossberg-Type Bidirectional Associative Memory Neural Networks with Variable Impulsive Perturbations and Time-Varying Delays," Mathematics, MDPI, vol. 8(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    2. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    3. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    4. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Existence and globally exponential stability of equilibrium for BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 588-597.
    5. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    6. Lou, Xu Yang & Cui, Bao Tong, 2006. "Global asymptotic stability of delay BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 1023-1031.
    7. Wang, Hui & Liao, Xiaofeng & Li, Chuandong, 2007. "Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1028-1039.
    8. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    9. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    10. Chen, Zhang & Ruan, Jiong, 2007. "Global dynamic analysis of general Cohen–Grossberg neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1830-1837.
    11. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    12. Huang, Zai-Tang & Yang, Qi-Gui & Luo, Xiao-shu, 2008. "Exponential stability of impulsive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 770-780.
    13. Gui, Zhanji & Yang, Xiao-Song & Ge, Weigao, 2008. "Existence and global exponential stability of periodic solutions of recurrent cellular neural networks with impulses and delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 14-29.
    14. Wen, Zhen & Sun, Jitao, 2009. "Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1829-1837.
    15. Chen, Zhang, 2009. "Complete synchronization for impulsive Cohen–Grossberg neural networks with delay under noise perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1664-1669.
    16. Li, Kelin & Zeng, Huanglin, 2010. "Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2329-2349.
    17. Huang, Zhenkun & Xia, Yonghui, 2009. "Exponential periodic attractor of impulsive BAM networks with finite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 373-384.
    18. Huang, Tingwen & Li, Chuandong & Chen, Goong, 2007. "Stability of Cohen–Grossberg neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 992-996.
    19. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    20. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:35:y:2008:i:2:p:263-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.