IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i9p144-d165036.html
   My bibliography  Save this article

Stability Analysis of Cohen–Grossberg Neural Networks with Random Impulses

Author

Listed:
  • Ravi Agarwal

    (Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
    Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Snezhana Hristova

    (Faculty of Mathematics, Plovdiv University, Tzar Asen 24, 4000 Plovdiv, Bulgaria)

  • Donal O’Regan

    (School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 CF50 Galway, Ireland)

  • Peter Kopanov

    (Faculty of Mathematics, Plovdiv University, Tzar Asen 24, 4000 Plovdiv, Bulgaria)

Abstract

The Cohen and Grossberg neural networks model is studied in the case when the neurons are subject to a certain impulsive state displacement at random exponentially-distributed moments. These types of impulses significantly change the behavior of the solutions from a deterministic one to a stochastic process. We examine the stability of the equilibrium of the model. Some sufficient conditions for the mean-square exponential stability and mean exponential stability of the equilibrium of general neural networks are obtained in the case of the time-varying potential (or voltage) of the cells, with time-dependent amplification functions and behaved functions, as well as time-varying strengths of connectivity between cells and variable external bias or input from outside the network to the units. These sufficient conditions are explicitly expressed in terms of the parameters of the system, and hence, they are easily verifiable. The theory relies on a modification of the direct Lyapunov method. We illustrate our theory on a particular nonlinear neural network.

Suggested Citation

  • Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2018. "Stability Analysis of Cohen–Grossberg Neural Networks with Random Impulses," Mathematics, MDPI, vol. 6(9), pages 1-12, August.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:9:p:144-:d:165036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/9/144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/9/144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Chuanzhi, 2008. "Stability analysis of Cohen–Grossberg BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 263-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Wenpin & Zhong, Shouming & Yang, Jun, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1084-1091.
    2. Shih, Chih-Wen & Tseng, Jui-Pin, 2009. "Global consensus for discrete-time competitive systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 302-310.
    3. Li, Chun-Hsien & Yang, Suh-Yuh, 2009. "Global attractivity in delayed Cohen–Grossberg neural network models," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1975-1987.
    4. Wen, Zhen & Sun, Jitao, 2009. "Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1829-1837.
    5. Gani Stamov & Ivanka Stamova & Stanislav Simeonov & Ivan Torlakov, 2020. "On the Stability with Respect to H-Manifolds for Cohen–Grossberg-Type Bidirectional Associative Memory Neural Networks with Variable Impulsive Perturbations and Time-Varying Delays," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    6. Li, Kelin & Zeng, Huanglin, 2010. "Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2329-2349.
    7. Ping, Zhao Wu & Lu, Jun Guo, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 164-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:9:p:144-:d:165036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.