IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i5p1704-1723.html
   My bibliography  Save this article

El Naschie’s ε(∞) space–time, hydrodynamic model of scale relativity theory and some applications

Author

Listed:
  • Agop, M.
  • Nica, P.
  • Ioannou, P.D.
  • Malandraki, Olga
  • Gavanas-Pahomi, I.

Abstract

A generalization of the Nottale’s scale relativity theory is elaborated: the generalized Schrödinger equation results as an irrotational movement of Navier–Stokes type fluids having an imaginary viscosity coefficient. Then ψ simultaneously becomes wave-function and speed potential. In the hydrodynamic formulation of scale relativity theory, some implications in the gravitational morphogenesis of structures are analyzed: planetary motion quantizations, Saturn’s rings motion quantizations, redshift quantization in binary galaxies, global redshift quantization etc. The correspondence with El Naschie’s ε(∞) space–time implies a special type of superconductivity (El Naschie’s superconductivity) and Cantorian-fractal sequences in the quantification of the Universe.

Suggested Citation

  • Agop, M. & Nica, P. & Ioannou, P.D. & Malandraki, Olga & Gavanas-Pahomi, I., 2007. "El Naschie’s ε(∞) space–time, hydrodynamic model of scale relativity theory and some applications," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1704-1723.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:5:p:1704-1723
    DOI: 10.1016/j.chaos.2006.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906004498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 39-42.
    2. El Naschie, M.S., 2005. "A new solution for the two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 935-939.
    3. El Naschie, M.S., 2005. "From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 969-977.
    4. El Naschie, M.S., 2006. "Hilbert space, the number of Higgs particles and the quantum two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 9-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agop, M. & Craciun, P., 2006. "El Naschie’s ε(∞) space–time and the two slit experiment in the Weyl–Dirac theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 441-452.
    2. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.
    3. Iovane, G., 2006. "Cantorian spacetime and Hilbert space: Part I—Foundations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 857-878.
    4. Agop, M. & Chicos, Liliana & Nica, P., 2009. "Transport phenomena in nanostructures and non-differentiable space–time," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 803-814.
    5. Agop, M. & Vasilica, M., 2006. "El Naschie’s supergravity by means of the gravitational instantons synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 318-323.
    6. Agop, M. & Abacioaie, D., 2007. "El Naschie’s ε(∞) space–time, interface between Weyl–Dirac bubbles and Cantorian fractal superstring," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 235-243.
    7. Buzea, C. Gh. & Agop, M. & Galusca, G. & Vizureanu, P. & Ionita, I., 2007. "El Naschie’s superconductivity in the time dependent Ginzburg–Landau model," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1060-1074.
    8. Agop, M. & Craciun, P., 2006. "El Naschie’s Cantorian gravity and Einstein’s quantum gravity," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 30-40.
    9. El Naschie, Mohamed Saladin, 2006. "The idealized quantum two-slit gedanken experiment revisited—Criticism and reinterpretation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 843-849.
    10. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    11. Yang, Ciann-Dong, 2007. "The origin and proof of quantization axiom p→pˆ=-iℏ∇ in complex spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 274-283.
    12. Sun, Lei & Zhang, Xiaozhong, 2009. "A note on biorthogonality of the scaling functions with arbitrary matrix dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 711-715.
    13. Iovane, Gerardo, 2009. "The set of prime numbers: Multiscale analysis and numeric accelerators," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1953-1965.
    14. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    15. Liu, Zhanwei & Hu, Guoen & Lu, Zhibo, 2009. "Parseval frame scaling sets and MSF Parseval frame wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1966-1974.
    16. EL-Nabulsi, Ahmad Rami, 2009. "Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 52-61.
    17. Yang, Ciann-Dong, 2007. "Complex tunneling dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 312-345.
    18. Iovane, G., 2007. "Hypersingular integral equations, Kähler manifolds and Thurston mirroring effect in ϵ(∞) Cantorian spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1041-1053.
    19. Agop, M. & Rusu, Ioana, 2007. "El Naschie’s self-organization of the patterns in a plasma discharge: Experimental and theoretical results," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 172-186.
    20. Yang, Ciann-Dong, 2009. "Complex spin and anti-spin dynamics: A generalization of de Broglie–Bohm theory to complex space," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 317-333.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:5:p:1704-1723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.