IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i3p677-681.html
   My bibliography  Save this article

Fuzzy Kähler manifolds

Author

Listed:
  • Marek-Crnjac, L.

Abstract

Quarks are the elementary units of matter and similarly the Betti numbers are the elementary units of the invariant topology of space–time. In the present work we use the Betti numbers of the first and second fuzzy Kähler manifold to write down the coupling constants α¯g, α¯gs and the inverse electromagnetic fine structure constant α¯0. The masses of the average pentaquark and the Higgs particle are written in terms of α¯g, α¯gs and also in terms of the Betti numbers of the first fuzzy Kähler manifold. The paper should help in demystifying the meaning of the value of the inverse electromagnetic constant α¯0=137.

Suggested Citation

  • Marek-Crnjac, L., 2007. "Fuzzy Kähler manifolds," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 677-681.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:3:p:677-681
    DOI: 10.1016/j.chaos.2006.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906003304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Pentaquark mass sum rule and the Higgs," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 899-901.
    2. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
    3. Marek-Crnjac, L., 2006. "Pentaquarks and the mass spectrum of the elementary particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 332-341.
    4. El Naschie, M.S., 2006. "Holographic dimensional reduction: Center manifold theorem and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 816-822.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Naschie, M.S., 2008. "Eliminating gauge anomalies via a “point-less” fractal Yang–Mills theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1332-1335.
    2. El Naschie, M.S., 2008. "An outline for a quantum golden field theory," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 317-323.
    3. Marek-Crnjac, L., 2009. "A short history of fractal-Cantorian space-time," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2697-2705.
    4. Azab Abd-Allah, M. & El-Saady, Kamal & Ghareeb, A., 2009. "(r,s)-Fuzzy F-open sets and (r,s)-fuzzy F-closed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 649-656.
    5. Marek-Crnjac, L., 2008. "Exceptional and semi simple Lie groups hierarchies and the maximum number of elementary particles beyond the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 1-5.
    6. El Naschie, M.S., 2008. "Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 662-668.
    7. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.
    8. Sadeqi, I. & Kia, F. Solaty, 2009. "Fuzzy normed linear space and its topological structure," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2576-2589.
    9. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    10. Marek-Crnjac, L., 2008. "From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1279-1288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2007. "Determining the number of Fermions and the number of Boson separately in an extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1241-1243.
    2. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    3. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.
    4. Marek-Crnjac, L., 2006. "Pentaquarks and the mass spectrum of the elementary particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 332-341.
    5. El-Okaby, Ayman A., 2008. "The exceptional E-infinity theory holographic boundary, F-theory and the number of particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1286-1291.
    6. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    7. El Naschie, M.S., 2007. "A derivation of the electromagnetic coupling α0≃137.036," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 521-526.
    8. Zhou, Jianfeng & Song, Deyao, 2009. "The properties of a class of biorthogonal vector-valued nonseparable bivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2226-2233.
    9. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    10. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    11. El Naschie, M.S., 2007. "From symmetry to particles," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 427-430.
    12. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    13. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    14. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    15. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.
    16. Mursaleen, M. & Mohiuddine, S.A., 2009. "On stability of a cubic functional equation in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2997-3005.
    17. Stakhov, Alexey, 2007. "The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 315-334.
    18. Chen, Ning & Li, Zichuan & Jin, Yuanyuan, 2009. "Visual presentation of dynamic systems with hyperbolic planar symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 621-634.
    19. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    20. El Naschie, M.S., 2006. "E-infinity theory—Some recent results and new interpretations," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 845-853.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:3:p:677-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.