IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/153974.html
   My bibliography  Save this article

Exp-Function Method for a Generalized MKdV Equation

Author

Listed:
  • Yuzhen Chai
  • Tingting Jia
  • Huiqin Hao
  • Jianwen Zhang

Abstract

Under investigation in this paper is a generalized MKdV equation, which describes the propagation of shallow water in fluid mechanics. In this paper, we have derived the exact solutions for the generalized MKdV equation including the bright soliton, dark soliton, two-peak bright soliton, two-peak dark soliton, shock soliton and periodic wave solution via Exp-function method. By figures and symbolic computations, we have discussed the propagation characteristics of those solitons under different values of those coefficients in the generalized MKdV equation. The method constructing soliton solutions in this paper may be useful for the investigations on the other nonlinear mathematical physics model and the conclusions of this paper can give theory support for the study of dynamic features of models in the shallow water.

Suggested Citation

  • Yuzhen Chai & Tingting Jia & Huiqin Hao & Jianwen Zhang, 2014. "Exp-Function Method for a Generalized MKdV Equation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-8, May.
  • Handle: RePEc:hin:jnddns:153974
    DOI: 10.1155/2014/153974
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/153974.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/153974.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/153974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    2. El-Danaf, Talaat S. & Ramadan, Mohamed A. & Abd Alaal, Faysal E.I., 2005. "The use of adomian decomposition method for solving the regularized long-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 747-757.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Yin & Wu, Gang-Zhou & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Assas, Laila M.B., 2008. "Variational iteration method for solving coupled-KdV equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1225-1228.
    3. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    4. Ramos, J.I., 2007. "Solitary waves of the EW and RLW equations," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1498-1518.
    5. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    6. Xu, Lan, 2009. "The variational iteration method for fourth order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1386-1394.
    7. Kuru, S., 2009. "Compactons and kink-like solutions of BBM-like equations by means of factorization," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 626-633.
    8. Hammad, D.A. & El-Azab, M.S., 2016. "Chebyshev–Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 228-240.
    9. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    10. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    11. Wang, Shu-Qiang & He, Ji-Huan, 2008. "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 688-691.
    12. Tajvidi, T. & Razzaghi, M. & Dehghan, M., 2008. "Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 59-66.
    13. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    14. He, Ji-Huan, 2007. "Variational approach for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1430-1439.
    15. Elgazery, Nasser S., 2008. "Numerical solution for the Falkner–Skan equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 738-746.
    16. Darvishi, M.T. & Khani, F., 2009. "Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2484-2490.
    17. Jules Sadefo-Kamdem, 2011. "Integral Transforms With The Homotopy Perturbation Method And Some Applications," Working Papers hal-00580023, HAL.
    18. Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.
    19. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    20. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:153974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.