IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v70y2005i2p119-124.html
   My bibliography  Save this article

Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method

Author

Listed:
  • Soliman, A.A.

Abstract

The solution for the generalized regularized long wave (for short, GRLW) equation based on variational iteratiom method, is exactly obtained. In this method, the solution is calculated in the form of convergent power series with easily computable componentes. This approach does need linearization, weak nonlinearity assumptions or perturbation theory. The results reveal that the method is very effective and convenient.

Suggested Citation

  • Soliman, A.A., 2005. "Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(2), pages 119-124.
  • Handle: RePEc:eee:matcom:v:70:y:2005:i:2:p:119-124
    DOI: 10.1016/j.matcom.2005.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475405001679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2005.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, A.H.A. & Raslan, K.R., 2009. "Variational iteration method for solving partial differential equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1520-1529.
    2. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    3. Soliman, A.A., 2009. "On the solution of two-dimensional coupled Burgers’ equations by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1146-1155.
    4. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    5. Li, Qi & Mei, Liquan, 2018. "Local momentum-preserving algorithms for the GRLW equation," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 77-92.
    6. Karakoç, S. Battal Gazi & Zeybek, Halil, 2016. "Solitary-wave solutions of the GRLW equation using septic B-spline collocation method," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 159-171.
    7. Gao, Fuzheng & Qiao, Feng & Rui, Hongxing, 2015. "Numerical simulation of the modified regularized long wave equation by split least-squares mixed finite element method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 64-73.
    8. Ramos, J.I., 2007. "Solitary wave interactions of the GRLW equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 479-491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:70:y:2005:i:2:p:119-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.