IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i4p1268-1277.html
   My bibliography  Save this article

Modulational instability, solitons and periodic waves in a model of quantum degenerate boson–fermion mixtures

Author

Listed:
  • Belmonte-Beitia, Juan
  • Pérez-García, Víctor M.
  • Vekslerchik, Vadym

Abstract

In this paper, we study a system of coupled nonlinear Schrödinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves.

Suggested Citation

  • Belmonte-Beitia, Juan & Pérez-García, Víctor M. & Vekslerchik, Vadym, 2007. "Modulational instability, solitons and periodic waves in a model of quantum degenerate boson–fermion mixtures," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1268-1277.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1268-1277
    DOI: 10.1016/j.chaos.2005.12.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906000038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.12.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wazwaz, Abdul-Majid, 2006. "Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1005-1013.
    2. Xu, Gui-qiong & Li, Zhi-bin, 2005. "On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1363-1375.
    3. Dai, Chaoqing & Zhang, Jiefang, 2006. "Jacobian elliptic function method for nonlinear differential-difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1042-1047.
    4. Mohamadou, Alidou & Kenfack-Jiotsa, A. & Kofané, T.C., 2006. "Modulational instability and spatiotemporal transition to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 914-925.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerdjikov, V.S. & Kostov, N.A. & Doktorov, E.V. & Matsuka, N.P., 2009. "Generalized perturbed complex Toda chain for Manakov system and exact solutions of Bose–Einstein mixtures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(1), pages 112-119.
    2. Belmonte-Beitia, Juan, 2009. "Exact solutions for the quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1005-1009.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akbulut, Arzu & Taşcan, Filiz, 2017. "Application of conservation theorem and modified extended tanh-function method to (1+1)-dimensional nonlinear coupled Klein–Gordon–Zakharov equation," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 33-40.
    2. Jang, Bongsoo, 2009. "New exact travelling wave solutions of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 646-654.
    3. Taghread Ghannam Alharbi & Abdulghani Alharbi, 2023. "A Study of Traveling Wave Structures and Numerical Investigations into the Coupled Nonlinear Schrödinger Equation Using Advanced Mathematical Techniques," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    4. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    5. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Md. Asaduzzaman & Adem Kilicman & Md. Zulfikar Ali & Siti Hasana Sapar, 2020. "Fixed Point Theorem Based Solvability of 2-Dimensional Dissipative Cubic Nonlinear Klein-Gordon Equation," Mathematics, MDPI, vol. 8(7), pages 1-12, July.
    7. Verma, Pallavi & Kaur, Lakhveer, 2019. "Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)- Boussinesq equation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 879-886.
    8. Porsezian, K. & Murali, R. & Malomed, Boris A. & Ganapathy, R., 2009. "Modulational instability in linearly coupled complex cubic–quintic Ginzburg–Landau equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1907-1913.
    9. Aydın, Ayhan, 2009. "Multisymplectic integration of N-coupled nonlinear Schrödinger equation with destabilized periodic wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 735-751.
    10. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    11. Sahu, P.K. & Saha Ray, S., 2015. "Legendre spectral collocation method for Fredholm integro-differential-difference equation with variable coefficients and mixed conditions," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 575-580.
    12. Deffo, Guy Roger & Yamgoué, Serge Bruno & Pelap, François Beceau, 2021. "Bifurcation of solitary and periodic waves of an extended cubic-quintic Schrödinger equation with nonlinear dispersion effects governing modulated waves in a bandpass inductor-capacitor network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Seadawy, A.R. & El-Kalaawy, O.H. & Aldenari, R.B., 2016. "Water wave solutions of Zufiria’s higher-order Boussinesq type equations and its stability," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 57-71.
    14. Ye, Caier & Zhang, Weiguo, 2015. "Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 49-57.
    15. Shek, E.C.M. & Chow, K.W., 2008. "The discrete modified Korteweg–de Vries equation with non-vanishing boundary conditions: Interactions of solitons," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 296-302.
    16. Lv, Xiumei & Lai, Shaoyong & Wu, YongHong, 2009. "An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 82-90.
    17. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    18. Deng, Dingwen & Liang, Dong, 2018. "The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 188-209.
    19. El-Nahhas, A., 2009. "Analytic approximations for the one-loop soliton solution of the Vakhnenko equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2257-2264.
    20. Nur Alam & Fethi Bin Muhammad Belgacem, 2016. "Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ))-Expansion Method Implementation," Mathematics, MDPI, vol. 4(1), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1268-1277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.