IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v26y2005i5p1363-1375.html
   My bibliography  Save this article

On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations

Author

Listed:
  • Xu, Gui-qiong
  • Li, Zhi-bin

Abstract

It is proven that generalized coupled higher-order nonlinear Schrödinger equations possess the Painlevé property for two particular choices of parameters, using the Weiss–Tabor–Carnevale method and Kruskal’s simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests.

Suggested Citation

  • Xu, Gui-qiong & Li, Zhi-bin, 2005. "On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1363-1375.
  • Handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1363-1375
    DOI: 10.1016/j.chaos.2005.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905002948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belmonte-Beitia, Juan & Pérez-García, Víctor M. & Vekslerchik, Vadym, 2007. "Modulational instability, solitons and periodic waves in a model of quantum degenerate boson–fermion mixtures," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1268-1277.
    2. El-Nahhas, A., 2009. "Analytic approximations for the one-loop soliton solution of the Vakhnenko equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2257-2264.
    3. Aydın, Ayhan, 2009. "Multisymplectic integration of N-coupled nonlinear Schrödinger equation with destabilized periodic wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 735-751.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1363-1375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.