IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v329y2018icp188-209.html
   My bibliography  Save this article

The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations

Author

Listed:
  • Deng, Dingwen
  • Liang, Dong

Abstract

Nonlinear wave equation is extensively applied in a wide variety of scientific fields, such as nonlinear optics, solid state physics and quantum field theory. In this paper, two high-performance compact alternating direction implicit (ADI) methods are developed for the nonlinear wave equations. The first scheme is developed a three-level nonlinear difference scheme for nonlinear wave equations, where in x-direction, series of linear tridiagonal systems are solved by Thomas algorithm, while in y-direction, nonlinear algebraic system are computed by Newton’s iterative method. In contrast, the second scheme is linear, and permits the multiple uses of the Thomas algorithm in both x- and y-directions, thus it saves much time cost. By using the discrete energy analysis method, it is shown that both the developed schemes can attain numerical accuracy of order O(τ4+hx4+hy4) in H1-norm. Meanwhile, by the fixed point theorem and symmetric positive-definite properties of coefficient matrix, it is proved that they are both uniquely solvable. Besides, the proposed schemes are extended to the numerical solutions of the coupled sine-Gordon wave equations and damped wave equations. Finally, numerical results confirm the convergence orders and exhibit efficiency of our algorithms.

Suggested Citation

  • Deng, Dingwen & Liang, Dong, 2018. "The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 188-209.
  • Handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:188-209
    DOI: 10.1016/j.amc.2018.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318301048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mayo, 2004. "High-order accurate implicit finite difference method for evaluating American options," The European Journal of Finance, Taylor & Francis Journals, vol. 10(3), pages 212-237.
    2. Sun, Yunchuan, 2015. "New exact traveling wave solutions for double Sine–Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 100-104.
    3. Wazwaz, Abdul-Majid, 2006. "Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1005-1013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Jianqiang & Wang, Quanxiang & Zhang, Zhiyue, 2023. "Conservative finite difference methods for the Boussinesq paradigm equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 588-613.
    2. Deng, Dingwen & Wu, Qiang, 2023. "Accuracy improvement of a Predictor–Corrector compact difference scheme for the system of two-dimensional coupled nonlinear wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 223-249.
    3. Xie, Jianqiang & Zhang, Zhiyue, 2019. "An analysis of implicit conservative difference solver for fractional Klein–Gordon–Zakharov system," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 153-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Bongsoo, 2009. "New exact travelling wave solutions of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 646-654.
    2. Seadawy, A.R. & El-Kalaawy, O.H. & Aldenari, R.B., 2016. "Water wave solutions of Zufiria’s higher-order Boussinesq type equations and its stability," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 57-71.
    3. Ye, Caier & Zhang, Weiguo, 2015. "Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 49-57.
    4. Lv, Xiumei & Lai, Shaoyong & Wu, YongHong, 2009. "An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 82-90.
    5. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    6. Md. Asaduzzaman & Adem Kilicman & Md. Zulfikar Ali & Siti Hasana Sapar, 2020. "Fixed Point Theorem Based Solvability of 2-Dimensional Dissipative Cubic Nonlinear Klein-Gordon Equation," Mathematics, MDPI, vol. 8(7), pages 1-12, July.
    7. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan, 2021. "A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    8. Belmonte-Beitia, Juan & Pérez-García, Víctor M. & Vekslerchik, Vadym, 2007. "Modulational instability, solitons and periodic waves in a model of quantum degenerate boson–fermion mixtures," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1268-1277.
    9. JC Ndogmo, 2008. "Some Control Variates for exotic options," Papers 0806.4675, arXiv.org.
    10. J. C. Ndogmo & D. B. Ntwiga, 2007. "High-order accurate implicit methods for the pricing of barrier options," Papers 0710.0069, arXiv.org.
    11. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    12. Chinonso Nwankwo & Weizhong Dai, 2020. "Explicit RKF-Compact Scheme for Pricing Regime Switching American Options with Varying Time Step," Papers 2012.09820, arXiv.org, revised Feb 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:188-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.