IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp879-886.html
   My bibliography  Save this article

Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)- Boussinesq equation

Author

Listed:
  • Verma, Pallavi
  • Kaur, Lakhveer

Abstract

Nonlinear and dispersive media deals with propagation of waves which are characterized by several nonlinear partial differential equations. A new form of (3+1) - dimensional B-type Kadomstev–Petviashvili - Boussinesq equation being one of them, has been investigated via bringing light on singularities with help of analysis of Painlevé property and it turns out that the equation clears the Painlevé test which affirms its explicit integration. Truncated Painlevé expansion and Bell polynomial approach is applied to establish bilinear equation. Furthermore by using the novel test function, various exact solutions consisting numerous arbitrary constants are revealed in an orderly way. Graphical representation and distinct properties are discussed corresponding to the decorum of each acquired solution. Various patterns, including kink-like along with periodic exhibiting solitons, are explored.

Suggested Citation

  • Verma, Pallavi & Kaur, Lakhveer, 2019. "Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)- Boussinesq equation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 879-886.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:879-886
    DOI: 10.1016/j.amc.2018.11.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.11.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Su & Genjiu Xu, 2016. "New Exact Solutions for the (3+1)-Dimensional Generalized BKP Equation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-9, July.
    2. El-Wakil, S.A. & Abdou, M.A., 2007. "New exact travelling wave solutions using modified extended tanh-function method," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 840-852.
    3. Russo, Matthew & Choudhury, S. Roy, 2017. "Analytic solutions of a microstructure PDE and the KdV and Kadomtsev–Petviashvili equations by invariant Painlevé analysis and generalized Hirota techniques," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 228-239.
    4. Dai, Chaoqing & Zhang, Jiefang, 2006. "Jacobian elliptic function method for nonlinear differential-difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1042-1047.
    5. Abdou, M.A., 2007. "The extended F-expansion method and its application for a class of nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 95-104.
    6. Demiray, Seçil & Taşcan, Filiz, 2016. "Quasi-periodic solutions of (3+1) generalized BKP equation by using Riemann theta functions," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 131-141.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    2. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Nur Alam & Fethi Bin Muhammad Belgacem, 2016. "Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ))-Expansion Method Implementation," Mathematics, MDPI, vol. 4(1), pages 1-13, February.
    4. Ranković, Dragana & Sivčević, Vladimir & Batova, Anna & Zdravković, Slobodan, 2023. "Three kinds of W-potentials in nonlinear biophysics of microtubules," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Seadawy, Aly R. & Ali, Asghar & Althobaiti, Saad & Sayed, Samy, 2021. "Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Feiyun Pei & Guojiang Wu & Yong Guo, 2023. "Construction of Infinite Series Exact Solitary Wave Solution of the KPI Equation via an Auxiliary Equation Method," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    7. Sahu, P.K. & Saha Ray, S., 2015. "Legendre spectral collocation method for Fredholm integro-differential-difference equation with variable coefficients and mixed conditions," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 575-580.
    8. Akbulut, Arzu & Taşcan, Filiz, 2017. "Application of conservation theorem and modified extended tanh-function method to (1+1)-dimensional nonlinear coupled Klein–Gordon–Zakharov equation," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 33-40.
    9. Estévez, P.G. & Kuru, Ş. & Negro, J. & Nieto, L.M., 2009. "Travelling wave solutions of the generalized Benjamin–Bona–Mahony equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2031-2040.
    10. Attia Rani & Muhammad Shakeel & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Prem Junsawang, 2022. "Application of the Exp − φ ξ -Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    11. Wafaa B. Rabie & Hamdy M. Ahmed & Walid Hamdy, 2023. "Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method," Mathematics, MDPI, vol. 11(2), pages 1-28, January.
    12. Jang, Bongsoo, 2009. "New exact travelling wave solutions of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 646-654.
    13. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    14. Shek, E.C.M. & Chow, K.W., 2008. "The discrete modified Korteweg–de Vries equation with non-vanishing boundary conditions: Interactions of solitons," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 296-302.
    15. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    16. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    17. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    18. Tariq, Kalim U. & Bekir, Ahmet & Nisar, Sana, 2023. "The dynamical structures of the Sharma–Tasso–Olver model in doubly dispersive medium," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Taghread Ghannam Alharbi & Abdulghani Alharbi, 2023. "A Study of Traveling Wave Structures and Numerical Investigations into the Coupled Nonlinear Schrödinger Equation Using Advanced Mathematical Techniques," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    20. Dubey, Shweta & Chakraverty, S., 2022. "Application of modified extended tanh method in solving fractional order coupled wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 509-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:879-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.