IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v260y2015icp57-62.html
   My bibliography  Save this article

Synchronization of discrete dynamical networks with non-delayed and delayed coupling

Author

Listed:
  • Wu, Zhaoyan

Abstract

In this paper, synchronization of discrete dynamical networks with both non-delayed and delayed couplings are studied. Firstly, a class of complex networks with invariable topology structure are considered. Secondly, a class of complex networks with variable topology structure are discussed. Based on Lyapunov function method and linear matrix inequalities, the sufficient conditions for asymptotically local synchronization of the above two classes of networks are presented respectively. Finally, numerical examples are provided to verify our results.

Suggested Citation

  • Wu, Zhaoyan, 2015. "Synchronization of discrete dynamical networks with non-delayed and delayed coupling," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 57-62.
  • Handle: RePEc:eee:apmaco:v:260:y:2015:i:c:p:57-62
    DOI: 10.1016/j.amc.2015.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315003586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lei & Dai, Hua-ping & Sun, You-xian, 2007. "Synchronization criteria for a generalized complex delayed dynamical network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 703-713.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    3. Li, Ping & Yi, Zhang & Zhang, Lei, 2006. "Global synchronization of a class of delayed complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 903-908.
    4. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    5. Li, C.P. & Sun, W.G. & Kurths, J., 2006. "Synchronization of complex dynamical networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 24-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jindao Zha & Chunbiao Li & Bing Song & Wen Hu, 2016. "Synchronisation control of composite chaotic systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3952-3959, December.
    2. Liu, Lizhi & Wang, Yinhe & Gao, Zilin, 2020. "Tracking control for the dynamic links of discrete-time complex dynamical network via state observer," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. Syed Ali, M. & Yogambigai, J., 2016. "Synchronization of complex dynamical networks with hybrid coupling delays on time scales by handling multitude Kronecker product terms," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 244-258.
    4. Cheng, Ranran & Peng, Mingshu & Zuo, Jun, 2016. "Pinning synchronization of discrete dynamical networks with delay coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 444-453.
    5. Cheng, Ranran & Peng, Mingshu & Yu, Jinchen & Li, Haifen, 2019. "Synchronization for discrete-time complex networks with probabilistic time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1088-1101.
    6. Feng, Jianwen & Yang, Pan & Zhao, Yi, 2016. "Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 52-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    2. Weiwei Zhang & Jinde Cao & Dingyuan Chen & Ahmed Alsaedi, 2019. "Out Lag Synchronization of Fractional Order Delayed Complex Networks with Coupling Delay via Pinning Control," Complexity, Hindawi, vol. 2019, pages 1-7, August.
    3. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    4. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    5. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    6. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    7. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    8. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    9. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    10. Baek, Seung Ki & Kim, Tae Young & Kim, Beom Jun, 2008. "Testing a priority-based queue model with Linux command histories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3660-3668.
    11. Freddy Hernán Cepeda López, 2008. "La topología de redes como herramienta de seguimiento en el Sistema de Pagos de Alto Valor en Colombia," Borradores de Economia 513, Banco de la Republica de Colombia.
    12. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    13. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    14. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    15. Chang, Chia-ling & Chen, Shu-heng, 2011. "Interactions in DSGE models: The Boltzmann-Gibbs machine and social networks approach," Economics Discussion Papers 2011-25, Kiel Institute for the World Economy (IfW Kiel).
    16. Lin, Yi & Zhang, Jianwei & Yang, Bo & Liu, Hong & Zhao, Liping, 2019. "An optimal routing strategy for transport networks with minimal transmission cost and high network capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 551-561.
    17. Stefano Breschi & Lucia Cusmano, 2002. "Unveiling the Texture of a European Research Area: Emergence of Oligarchic Networks under EU Framework Programmes," KITeS Working Papers 130, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Jul 2002.
    18. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    19. Huang, Huilin, 2009. "The degree sequences of an asymmetrical growing network," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 420-425, February.
    20. Gianluca Carnabuci, 2013. "The distribution of technological progress," Empirical Economics, Springer, vol. 44(3), pages 1143-1154, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:260:y:2015:i:c:p:57-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.