IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i2p555-570.html
   My bibliography  Save this article

Stability and dynamics of a controlled van der Pol–Duffing oscillator

Author

Listed:
  • Ji, J.C.
  • Hansen, C.H.

Abstract

The trivial equilibrium of a van der Pol–Duffing oscillator under a linear-plus-nonlinear feedback control may change its stability either via a single or via a double Hopf bifurcation if the time delay involved in the feedback reaches certain values. It is found that the trivial equilibrium may lose its stability via a subcritical or supercritical Hopf bifurcation and regain its stability via a reverse subcritical or supercritical Hopf bifurcation as the time delay increases. A stable limit cycle appears after a supercritical Hopf bifurcation occurs and disappears through a reverse supercritical Hopf bifurcation. The interaction of the weakly periodic excitation and the stable bifurcating solution is investigated for the forced system under primary resonance conditions. It is shown that the forced periodic response may lose its stability via a Neimark–Sacker bifurcation. Analytical results are validated by a comparison with those of direct numerical integration.

Suggested Citation

  • Ji, J.C. & Hansen, C.H., 2006. "Stability and dynamics of a controlled van der Pol–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 555-570.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:2:p:555-570
    DOI: 10.1016/j.chaos.2005.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790500617X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hongbin & Liu, Jiaqi, 2005. "Stability and bifurcation analysis in a magnetic bearing system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 813-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Mei-Qi & Ma, Wen-Li & Li, Yuan & Chen, En-Li & Liu, Peng-Fei & Zhang, Ming-Zhi, 2022. "Dynamic analysis of piecewise nonlinear systems with fractional differential delay feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Ji, J.C. & Zhang, N. & Gao, Wei, 2009. "Difference resonances in a controlled van der Pol-Duffing oscillator involving time delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 975-980.
    3. Li, Jiaorui & Feng, C.S., 2010. "First-passage failure of a business cycle model under time-delayed feedback control and wide-band random excitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5557-5562.
    4. Niu, Ben & Wei, Junjie, 2008. "Stability and bifurcation analysis in an amplitude equation with delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1362-1371.
    5. Peng, Ya-Fu & Hsu, Chun-Fei, 2009. "Identification-based chaos control via backstepping design using self-organizing fuzzy neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1377-1389.
    6. Ji, J.C. & Zhang, N., 2009. "Nonlinear response of a forced van der Pol–Duffing oscillator at non-resonant bifurcations of codimension two," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1467-1475.
    7. Sah, Simohamed & Belhaq, Mohamed, 2008. "Effect of vertical high-frequency parametric excitation on self-excited motion in a delayed van der Pol oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1489-1496.
    8. Zhou, Jin & Cheng, Xuhua & Xiang, Lan & Zhang, Yecui, 2007. "Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 607-616.
    9. Iñarrea, Manuel, 2009. "Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1637-1652.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tzuu-Hseng S. & Kuo, Chao-Lin & Guo, Nai Ren, 2007. "Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1523-1531.
    2. Amer, Y.A. & Hegazy, U.H., 2007. "Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1328-1345.
    3. Soni, Tukesh & Dutt, Jayanta K. & Das, A.S., 2021. "Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay," Energy, Elsevier, vol. 231(C).
    4. Inayat-Hussain, Jawaid I., 2009. "Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2664-2671.
    5. Wang, Hongbin & Jiang, Weihua, 2006. "Multiple stabilities analysis in a magnetic bearing system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 789-799.
    6. Hu, H.Y. & Wang, Z.H., 2009. "Singular perturbation methods for nonlinear dynamic systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 13-27.
    7. Jiang, Weihua & Wang, Hongbin & Wei, Junjie, 2008. "A study of singularities for magnetic bearing systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 715-719.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:2:p:555-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.