IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i4p1328-1345.html
   My bibliography  Save this article

Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness

Author

Listed:
  • Amer, Y.A.
  • Hegazy, U.H.

Abstract

The non-linear dynamic behavior of a rigid disc-rotor supported by active magnetic bearings (AMB) is investigated, without gyroscopic effects. The rotor-AMB system is subjected to a periodically time-varying stiffness. The simultaneous primary resonance case is considered and examined. The vibration of the rotor is modeled by a coupled second-order non-linear ordinary differential equations with quadratic and cubic non-linearities. Their approximate solutions are sought applying the method of multiple scales. The steady-state response and the stability of the system at the simultaneous primary resonance case for various parameters are studied numerically, applying the frequency response function method. It is found that different shapes of chaotic motion exist, which are determined using phase-plane method. It is also shown that the system parameters have different effects on the non-linear response of the rotor. For steady-state response, however, multiple-valued solutions, jump phenomenon, hardening and softening non-linearity occur. Results are compared to previously published work.

Suggested Citation

  • Amer, Y.A. & Hegazy, U.H., 2007. "Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1328-1345.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:4:p:1328-1345
    DOI: 10.1016/j.chaos.2006.04.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906003869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.04.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hongbin & Liu, Jiaqi, 2005. "Stability and bifurcation analysis in a magnetic bearing system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 813-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inayat-Hussain, Jawaid I., 2009. "Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2664-2671.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tzuu-Hseng S. & Kuo, Chao-Lin & Guo, Nai Ren, 2007. "Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1523-1531.
    2. Inayat-Hussain, Jawaid I., 2009. "Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2664-2671.
    3. Wang, Hongbin & Jiang, Weihua, 2006. "Multiple stabilities analysis in a magnetic bearing system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 789-799.
    4. Jiang, Weihua & Wang, Hongbin & Wei, Junjie, 2008. "A study of singularities for magnetic bearing systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 715-719.
    5. Soni, Tukesh & Dutt, Jayanta K. & Das, A.S., 2021. "Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay," Energy, Elsevier, vol. 231(C).
    6. Hu, H.Y. & Wang, Z.H., 2009. "Singular perturbation methods for nonlinear dynamic systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 13-27.
    7. Ji, J.C. & Hansen, C.H., 2006. "Stability and dynamics of a controlled van der Pol–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 555-570.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:4:p:1328-1345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.