IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v26y2005i3p813-825.html
   My bibliography  Save this article

Stability and bifurcation analysis in a magnetic bearing system with time delays

Author

Listed:
  • Wang, Hongbin
  • Liu, Jiaqi

Abstract

A kind of magnetic bearing system with time delay is considered. Firstly, linear stability of the model is investigated by analyzing the distribution of the roots of the associated characteristic equation. According to the analysis results, the bifurcation diagram is drawn in the appropriate parameter plane. It is found that the Hopf bifurcation occurs when the delay passes through a sequence of critical values. Then the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the theory of normal form and center manifold. Finally, some numerical simulations are carried out to illustrate the results found.

Suggested Citation

  • Wang, Hongbin & Liu, Jiaqi, 2005. "Stability and bifurcation analysis in a magnetic bearing system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 813-825.
  • Handle: RePEc:eee:chsofr:v:26:y:2005:i:3:p:813-825
    DOI: 10.1016/j.chaos.2005.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905002274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Weihua & Wang, Hongbin & Wei, Junjie, 2008. "A study of singularities for magnetic bearing systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 715-719.
    2. Hu, H.Y. & Wang, Z.H., 2009. "Singular perturbation methods for nonlinear dynamic systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 13-27.
    3. Inayat-Hussain, Jawaid I., 2009. "Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2664-2671.
    4. Li, Tzuu-Hseng S. & Kuo, Chao-Lin & Guo, Nai Ren, 2007. "Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1523-1531.
    5. Ji, J.C. & Hansen, C.H., 2006. "Stability and dynamics of a controlled van der Pol–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 555-570.
    6. Soni, Tukesh & Dutt, Jayanta K. & Das, A.S., 2021. "Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay," Energy, Elsevier, vol. 231(C).
    7. Amer, Y.A. & Hegazy, U.H., 2007. "Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1328-1345.
    8. Wang, Hongbin & Jiang, Weihua, 2006. "Multiple stabilities analysis in a magnetic bearing system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 789-799.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:26:y:2005:i:3:p:813-825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.