IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v25y2005i1p121-128.html
   My bibliography  Save this article

Chaotic analysis of traffic time series

Author

Listed:
  • Shang, Pengjian
  • Li, Xuewei
  • Kamae, Santi

Abstract

In this paper, we applied non-linear time series modeling techniques to analyze the traffic data collected from the Beijing Xizhimen. The results indicated that chaotic characteristics obviously exist in the traffic system; techniques based on phase space dynamics can be used to analyze and predict the traffic speed.

Suggested Citation

  • Shang, Pengjian & Li, Xuewei & Kamae, Santi, 2005. "Chaotic analysis of traffic time series," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 121-128.
  • Handle: RePEc:eee:chsofr:v:25:y:2005:i:1:p:121-128
    DOI: 10.1016/j.chaos.2004.09.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904006472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.09.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    2. Neil A. Gershenfeld & Andreas S. Weigend, 1993. "The Future of Time Series: Learning and Understanding," Working Papers 93-08-053, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Meifeng & Zhang, Cheng & Zhang, Danping, 2014. "Multifractal and singularity analysis of highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 332-340.
    2. Leung, Eunice & Ma, King F. & Xie, Nan, 2023. "Nonlinear modeling of sparkling drink bubbles using a physics informed long short term memory network," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Shang, Du & Xu, Mengjia & Shang, Pengjian, 2017. "Generalized sample entropy analysis for traffic signals based on similarity measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 1-7.
    4. Ayşe İşi & Fatih Çemrek, 2019. "Comparison of the Global, Local and Semi-Local Chaotic Prediction Methods for Stock Markets: The Case of FTSE-100 Index," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 7(2), pages 289-300, December.
    5. Zhuofei Xia & Jiayuan Gong & Hailong Yu & Wenbo Ren & Jingnan Wang, 2022. "Research on Urban Traffic Incident Detection Based on Vehicle Cameras," Future Internet, MDPI, vol. 14(8), pages 1-17, July.
    6. Zhang, Yali & Shang, Pengjian & Sun, Zhenghui, 2018. "Diversity analysis based on ordered patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1126-1133.
    7. Iseri, Müge & Caglar, Hikmet & Caglar, Nazan, 2008. "A model proposal for the chaotic structure of Istanbul stock exchange," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1392-1398.
    8. Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
    9. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    10. Inoue, Kei & Tani, Kazuki, 2023. "Quantification of chaos in a time series generated from a traffic flow model using the extended entropic chaos degree," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Shang, Pengjian & Lu, Yongbo & Kamae, Santi, 2008. "Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 82-90.
    12. Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
    13. Li, Xuewei & Shang, Pengjian, 2007. "Multifractal classification of road traffic flows," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1089-1094.
    14. Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    15. Yin, Yi & Shang, Pengjian, 2016. "Forecasting traffic time series with multivariate predicting method," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 266-278.
    16. Xu, Kaiye & Shang, Pengjian & Feng, Guochen, 2015. "Multifractal time series analysis using the improved 0–1 test model," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 134-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakata, Makoto & Yamauchi, Atsuo & Tanimoto, Jun & Hagishima, Aya, 2010. "Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5353-5361.
    2. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    3. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    4. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    5. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    6. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    7. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    8. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    9. Zhang, Xiaoyan & Jarrett, David F., 1997. "Stability analysis of the classical car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 441-462, November.
    10. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    11. Fang, Yaling & Shi, Zhongke, 2015. "Chaos analysis and delayed-feedback control in a discrete dynamic coupled map traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 40-46.
    12. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Global Optimality under Internet of Vehicles: Strategy to Improve Traffic Safety and Reduce Energy Dissipation," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    13. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    14. Calvert, Simeon C. & Schakel, Wouter J. & van Lint, J.W.C., 2020. "A generic multi-scale framework for microscopic traffic simulation part II – Anticipation Reliance as compensation mechanism for potential task overload," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 42-63.
    15. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    16. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    17. Tamra Heberling & Lisa Davis & Jakub Gedeon & Charles Morgan & Tomáš Gedeon, 2016. "A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-38, August.
    18. Treiber, Martin & Kanagaraj, Venkatesan, 2015. "Comparing numerical integration schemes for time-continuous car-following models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 183-195.
    19. Corli, Andrea & Fan, Haitao, 2023. "String stability in traffic flows," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    20. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:25:y:2005:i:1:p:121-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.