IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i8p227-d872591.html
   My bibliography  Save this article

Research on Urban Traffic Incident Detection Based on Vehicle Cameras

Author

Listed:
  • Zhuofei Xia

    (Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan 442002, China
    Shiyan Industry Technique Academy of Chinese Academy of Engineering, Shiyan 442002, China)

  • Jiayuan Gong

    (Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan 442002, China
    Shiyan Industry Technique Academy of Chinese Academy of Engineering, Shiyan 442002, China)

  • Hailong Yu

    (Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Wenbo Ren

    (Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan 442002, China
    Shiyan Industry Technique Academy of Chinese Academy of Engineering, Shiyan 442002, China)

  • Jingnan Wang

    (Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan 442002, China
    Shiyan Industry Technique Academy of Chinese Academy of Engineering, Shiyan 442002, China)

Abstract

Situational detection in the traffic system is of great significance to traffic management and even urban management. Traditional detection methods are generally based on roadside equipment monitoring roads, and it is difficult to support large-scale and fine-grained traffic incident detection. In this study, we propose a detection method applied to the mobile edge, which detects traffic incidents based on the video captured by vehicle cameras, so as to overcome the limitations of roadside terminal perception. For swarm intelligence detection, we propose an improved YOLOv5s object detection network, adding an atrous pyramid pooling layer to the network and introducing a fusion attention mechanism to improve the model accuracy. Compared with the raw YOLOv5s, the mAP metrics of our improved model are increased by 3.3% to 84.2%, enabling it to detect vehicles, pedestrians, traffic accidents, and fire traffic incidents on the road with high precision in real time. This provides information for city managers to help them grasp the abnormal operation status of roads and cities in a timely and effective manner.

Suggested Citation

  • Zhuofei Xia & Jiayuan Gong & Hailong Yu & Wenbo Ren & Jingnan Wang, 2022. "Research on Urban Traffic Incident Detection Based on Vehicle Cameras," Future Internet, MDPI, vol. 14(8), pages 1-17, July.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:8:p:227-:d:872591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/8/227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/8/227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shang, Pengjian & Li, Xuewei & Kamae, Santi, 2005. "Chaotic analysis of traffic time series," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 121-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yi & Shang, Pengjian, 2016. "Forecasting traffic time series with multivariate predicting method," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 266-278.
    2. Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
    3. Inoue, Kei & Tani, Kazuki, 2023. "Quantification of chaos in a time series generated from a traffic flow model using the extended entropic chaos degree," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Iseri, Müge & Caglar, Hikmet & Caglar, Nazan, 2008. "A model proposal for the chaotic structure of Istanbul stock exchange," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1392-1398.
    5. Shang, Du & Xu, Mengjia & Shang, Pengjian, 2017. "Generalized sample entropy analysis for traffic signals based on similarity measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 1-7.
    6. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    7. Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Shang, Pengjian & Lu, Yongbo & Kamae, Santi, 2008. "Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 82-90.
    9. Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
    10. Leung, Eunice & Ma, King F. & Xie, Nan, 2023. "Nonlinear modeling of sparkling drink bubbles using a physics informed long short term memory network," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Li, Xuewei & Shang, Pengjian, 2007. "Multifractal classification of road traffic flows," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1089-1094.
    12. Dai, Meifeng & Zhang, Cheng & Zhang, Danping, 2014. "Multifractal and singularity analysis of highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 332-340.
    13. Xu, Kaiye & Shang, Pengjian & Feng, Guochen, 2015. "Multifractal time series analysis using the improved 0–1 test model," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 134-143.
    14. Ayşe İşi & Fatih Çemrek, 2019. "Comparison of the Global, Local and Semi-Local Chaotic Prediction Methods for Stock Markets: The Case of FTSE-100 Index," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 7(2), pages 289-300, December.
    15. Zhang, Yali & Shang, Pengjian & Sun, Zhenghui, 2018. "Diversity analysis based on ordered patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1126-1133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:8:p:227-:d:872591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.