Research on Urban Traffic Incident Detection Based on Vehicle Cameras
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shang, Pengjian & Li, Xuewei & Kamae, Santi, 2005. "Chaotic analysis of traffic time series," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 121-128.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Yi & Shang, Pengjian, 2016. "Forecasting traffic time series with multivariate predicting method," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 266-278.
- Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
- Inoue, Kei & Tani, Kazuki, 2023. "Quantification of chaos in a time series generated from a traffic flow model using the extended entropic chaos degree," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Iseri, Müge & Caglar, Hikmet & Caglar, Nazan, 2008. "A model proposal for the chaotic structure of Istanbul stock exchange," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1392-1398.
- Shang, Du & Xu, Mengjia & Shang, Pengjian, 2017. "Generalized sample entropy analysis for traffic signals based on similarity measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 1-7.
- Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
- Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Shang, Pengjian & Lu, Yongbo & Kamae, Santi, 2008. "Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 82-90.
- Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
- Leung, Eunice & Ma, King F. & Xie, Nan, 2023. "Nonlinear modeling of sparkling drink bubbles using a physics informed long short term memory network," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Li, Xuewei & Shang, Pengjian, 2007. "Multifractal classification of road traffic flows," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1089-1094.
- Dai, Meifeng & Zhang, Cheng & Zhang, Danping, 2014. "Multifractal and singularity analysis of highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 332-340.
- Xu, Kaiye & Shang, Pengjian & Feng, Guochen, 2015. "Multifractal time series analysis using the improved 0–1 test model," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 134-143.
- Ayşe İşi & Fatih Çemrek, 2019. "Comparison of the Global, Local and Semi-Local Chaotic Prediction Methods for Stock Markets: The Case of FTSE-100 Index," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 7(2), pages 289-300, December.
- Zhang, Yali & Shang, Pengjian & Sun, Zhenghui, 2018. "Diversity analysis based on ordered patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1126-1133.
More about this item
Keywords
traffic incident; attention mechanism; object detection; computer vision;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:8:p:227-:d:872591. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.