IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/93-08-053.html
   My bibliography  Save this paper

The Future of Time Series: Learning and Understanding

Author

Listed:
  • Neil A. Gershenfeld
  • Andreas S. Weigend

Abstract

Throughout scientific research, measured time series are the basis for characterizing an observed system and for predicting its future behavior. A number of new techniques (such as state-space reconstruction and neural networks) promise insights that traditional approaches to these very old problems cannot provide. In practice, however, the application of such new techniques has been hampered by the unreliability of their results and by the difficulty of relating their performance to those of mature algorithms. This chapter reports on a competition run through the Santa Fe Institute in which participants from a range of relevant disciplines applied a variety of time series analysis tools to a small group of common data sets in order to help make meaningful comparisons among their approaches. The design and the results of this competiton are described, and the historical and theoretical backgrounds necessary to understand the successful entries are reviewed.

Suggested Citation

  • Neil A. Gershenfeld & Andreas S. Weigend, 1993. "The Future of Time Series: Learning and Understanding," Working Papers 93-08-053, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:93-08-053
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyndman, Rob J., 2020. "A brief history of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
    2. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    3. Shang, Pengjian & Li, Xuewei & Kamae, Santi, 2005. "Chaotic analysis of traffic time series," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 121-128.
    4. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:93-08-053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.