IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924011561.html
   My bibliography  Save this article

Multimodal vehicle trajectory prediction and integrated threat assessment algorithm based on adaptive driving intention

Author

Listed:
  • Zhang, Xingrong
  • Cai, Jiaxuan
  • Chen, Fuzhou
  • Cheng, Rongjun

Abstract

As autonomous driving and connected communication technologies advance swiftly, vehicle trajectory prediction has become increasingly significant. The motion of a vehicle is contingent not only on its historical trajectory but is also subject to the influence of surrounding vehicles, thereby exhibiting intricate social and temporal interdependencies. Furthermore, the inherent randomness and uncertainty in driver behavior render vehicle trajectory prediction inherently multimodal, a factor that is frequently neglected in current research. Against this backdrop, a multimodal vehicle trajectory prediction (MTP) model based on an encoder-decoder architecture is proposed to hierarchically extract historical features of vehicles. The model consists of five key components: temporal feature encoder module, spatial interaction module, spatial-temporal dependence module, driving intention fusion module and multimodal trajectory output module. Experiments on the NGSIM dataset show that the predictive performance of the model has been improved to varying degrees, especially at 3–5 s, where the improvement is more significant. Compared with state-of-the-art models, the Root Mean Square Error (RMSE) error at 5 s time horizon is 3.38 m on NGSIM dataset, which represents a 25 % improvement. To measure the safety of predicted trajectories, we propose a comprehensive threat assessment model that combines collision time (TTC), headway (TH) and time to lateral collision (TLC) metrics based on safe distance theory. This model not only evaluates the longitudinal collision threat in the following state, but also evaluates the lateral collision threat during driving maneuvers in multi lane scenarios, thereby comprehensively improving the safety of vehicle driving. This research also offers new perspectives and insights for the development of autonomous driving.

Suggested Citation

  • Zhang, Xingrong & Cai, Jiaxuan & Chen, Fuzhou & Cheng, Rongjun, 2024. "Multimodal vehicle trajectory prediction and integrated threat assessment algorithm based on adaptive driving intention," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011561
    DOI: 10.1016/j.chaos.2024.115604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.