IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920305385.html
   My bibliography  Save this article

Fractal functions on the Sierpinski Gasket

Author

Listed:
  • Ri, SongIl

Abstract

In this paper, we ensure for the first time that graphs of fractal interpolation functions generated on the Sierpinski Gasket by nonconstant harmonic functions of fractal analysis are attractors of some iterated function systems, and at the same time, we give new nonlinear fractal interpolation functions.

Suggested Citation

  • Ri, SongIl, 2020. "Fractal functions on the Sierpinski Gasket," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305385
    DOI: 10.1016/j.chaos.2020.110142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ri, Songil, 2019. "New types of fractal interpolation surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 291-297.
    2. Amo, Enrique de & Díaz Carrillo, Manuel & Fernández Sánchez, Juan, 2013. "PCF self-similar sets and fractal interpolation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 28-39.
    3. Tang, Donglei, 2011. "The Laplacian on p.c.f. self-similar sets via the method of averages," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 538-547.
    4. Ri, SongIl, 2019. "DUPLICATE: New types of fractal interpolation surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 52-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Binyan & Liang, Yongshun, 2024. "On two special classes of fractal surfaces with certain Hausdorff and Box dimensions," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    2. Ri, SongIl, 2021. "A remarkable fact for the box dimensions of fractal interpolation curves of R3," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petruşel, Adrian & Petruşel, Gabriela, 2019. "Coupled fractal dynamics via Meir–Keeler operators," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 206-212.
    2. Dai, Zhong & Liu, Shutang, 2023. "Construction and box dimension of the composite fractal interpolation function," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Vasileios Drakopoulos & Polychronis Manousopoulos, 2020. "On Non-Tensor Product Bivariate Fractal Interpolation Surfaces on Rectangular Grids," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    4. Ri, SongIl, 2021. "A remarkable fact for the box dimensions of fractal interpolation curves of R3," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.