IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924010099.html
   My bibliography  Save this article

Source inference for misinformation spreading on hypergraphs

Author

Listed:
  • Yu, Xiaohang
  • Nie, Yanyi
  • Li, Wenyao
  • Luo, Ganzhi
  • Lin, Tao
  • Wang, Wei

Abstract

Source inference aims at revealing the seed of the misinformation spreading on social networks, and attracted great attention in the field of network science and cybersecurity. Extensive real-world data analyses have certificated that individual interactions exist pairwise and higher-order interactions, and thus should be described using the hypergraph. Previous studies about the source inference algorithms are mainly focused on simple graphs (i.e., a graph only has pairwise interactions) while neglecting the higher-order interactions. In this article, we propose a dynamical message-passing (DMP) algorithm to infer the misinformation spreading on hypergraphs. As a comparison, we also extend jordan centrality (JC), betweenness centrality (BC), closeness centrality (CC), and eigenvector centrality (EIG) algorithm to hypergraphs. The results show that our proposed DMP algorithm can accurately and effectively infer the propagation source on both artificial and real-world hypergraphs compared to the centrality algorithms. Even if the increase in propagation scale renders the other centrality algorithms completely ineffective, the DMP algorithm can still distinguish the real propagation sources in the form of a rank smaller than 10% of the network size. In general, our DMP algorithm provides an effective solution for inferring the misinformation source on high-order networks.

Suggested Citation

  • Yu, Xiaohang & Nie, Yanyi & Li, Wenyao & Luo, Ganzhi & Lin, Tao & Wang, Wei, 2024. "Source inference for misinformation spreading on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010099
    DOI: 10.1016/j.chaos.2024.115457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qingchu & Zhou, Rong & Hadzibeganovic, Tarik, 2019. "Conditional quenched mean-field approach for recurrent-state epidemic dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 71-79.
    2. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    3. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Li, Jiachen & Li, Wenjie & Gao, Feng & Cai, Meng & Zhang, Zengping & Liu, Xiaoyang & Wang, Wei, 2024. "Social contagions on higher-order community networks," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    5. Zhenxiang Gao & Yan Shi & Shanzhi Chen, 2015. "Measures of node centrality in mobile social networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(09), pages 1-20.
    6. Chengcheng Shao & Giovanni Luca Ciampaglia & Onur Varol & Kai-Cheng Yang & Alessandro Flammini & Filippo Menczer, 2018. "The spread of low-credibility content by social bots," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    2. Li, Xueqi & Ghosh, Dibakar & Lei, Youming, 2023. "Chimera states in coupled pendulum with higher-order interaction," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    4. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    5. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    7. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Qian, Cheng & Zhao, Dandan & Zhong, Ming & Peng, Hao & Wang, Wei, 2025. "Modeling and analysis of cascading failures in multilayer higher-order networks," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. John Higgins & Tarun Sabarwal, 2023. "Control and spread of contagion in networks with global effects," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(6), pages 1149-1187, December.
    14. Leng, Hui & Zhao, Yi & Luo, Jianfeng, 2024. "Simplicial epidemic model with a threshold policy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    15. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Xia, Huosong & Wang, Yuan & Zhang, Justin Zuopeng & Zheng, Leven J. & Kamal, Muhammad Mustafa & Arya, Varsha, 2023. "COVID-19 fake news detection: A hybrid CNN-BiLSTM-AM model," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    18. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    19. Yang, Luhe & Zhang, Lianzhong & Yang, Duoxing, 2022. "Asymmetric micro-dynamics in spatial anonymous public goods game," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    20. Xiong, Xiaojin & Yao, Yichao & Feng, Minyu & Chica, Manuel, 2024. "Adaptive payoff-driven interaction in networked snowdrift games," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.