IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i21p3340-d1506021.html
   My bibliography  Save this article

Exploring the Diversity of Kink Solitons in (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation

Author

Listed:
  • Musawa Yahya Almusawa

    (Department of Mathematics, Faculty of Science, Jazan University, P.O. Box 2097, Jazan 45142, Saudi Arabia)

  • Hassan Almusawa

    (Department of Mathematics, Faculty of Science, Jazan University, P.O. Box 2097, Jazan 45142, Saudi Arabia)

Abstract

The Wazwaz–Benjamin–Bona–Mahony (WBBM) equation is a well-known regularized long-wave model that examines the propagation kinematics of water waves. The current work employs an effective approach, called the Riccati Modified Extended Simple Equation Method (RMESEM), to effectively and precisely derive the propagating soliton solutions to the (3+1)-dimensional WBBM equation. By using this upgraded approach, we are able to find a greater diversity of families of propagating soliton solutions for the WBBM model in the form of exponential, rational, hyperbolic, periodic, and rational hyperbolic functions. To further graphically represent the propagating behavior of acquired solitons, we additionally provide 3D, 2D, and contour graphics which clearly demonstrate the presence of kink solitons, including solitary kink, anti-kink, twinning kink, bright kink, bifurcated kink, lump-like kink, and other multiple kinks in the realm of WBBM. Furthermore, by producing new and precise propagating soliton solutions, our RMESEM demonstrates its significance in revealing important details about the model behavior and provides indications regarding possible applications in the field of water waves.

Suggested Citation

  • Musawa Yahya Almusawa & Hassan Almusawa, 2024. "Exploring the Diversity of Kink Solitons in (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation," Mathematics, MDPI, vol. 12(21), pages 1-17, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3340-:d:1506021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/21/3340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/21/3340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    2. Rizvi, Syed T.R. & Seadawy, Aly R. & Ahmed, Sarfaraz & Younis, Muhammad & Ali, Kashif, 2021. "Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    4. Shen, Jianwei & Xu, Wei, 2007. "Travelling wave solutions in a class of generalized Korteweg–de Vries equation," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1299-1306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanidaporn Pleumpreedaporn & Elvin J. Moore & Sekson Sirisubtawee & Nattawut Khansai & Songkran Pleumpreedaporn, 2024. "Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives," Mathematics, MDPI, vol. 12(14), pages 1-15, July.
    2. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    3. Nadeem, Muhammad & Hayat, Tasawar, 2024. "Analyzing the bifurcation, chaos and soliton solutions to (3+1)-dimensional nonlinear hyperbolic Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Liu, Hui & Sun, Dihua & Liu, Weining, 2016. "Lattice hydrodynamic model based traffic control: A transportation cyber–physical system approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 795-801.
    5. Muskan Verma & Arvind Kumar Gupta & Sapna Sharma, 2024. "Traffic flow dynamics and oscillation control in conserved fractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-12, October.
    6. Zhou, Jibiao & Chen, Siyuan & Ma, Changxi & Dong, Sheng, 2022. "Stability analysis of pedestrian traffic flow in horizontal channels: A numerical simulation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Mei, Yiru & Zhao, Xiaoqun & Qian, Yeqing & Xu, Shangzhi & Li, Zhipeng, 2021. "Effect of self-stabilizing control in lattice hydrodynamic model with on-ramp and off-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    8. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Analyses of lattice hydrodynamic model using delayed feedback control with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 446-455.
    10. Qingtao, Zhai & Hongxia, Ge & Rongjun, Cheng, 2018. "An extended continuum model considering optimal velocity change with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 774-785.
    11. Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    13. Redhu, Poonam & Gupta, Arvind Kumar, 2016. "Effect of forward looking sites on a multi-phase lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 150-160.
    14. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    15. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    16. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
    17. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    18. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2018. "Nonlinear analysis for a modified continuum model considering driver’s memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 18-27.
    20. Shubham Mehta & Raveena Dangi & Vikash Siwach & Poonam Redhu, 2025. "Effect of weather’s visibility on traffic dynamics: a novel lattice hydrodynamic model for curved roads with passing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(1), pages 1-9, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3340-:d:1506021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.