IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i2d10.1007_s00180-017-0753-z.html
   My bibliography  Save this article

Statistical inference in mechanistic models: time warping for improved gradient matching

Author

Listed:
  • Mu Niu

    (University of Glasgow)

  • Benn Macdonald

    (University of Glasgow)

  • Simon Rogers

    (University of Glasgow)

  • Maurizio Filippone

    (Eurecom)

  • Dirk Husmeier

    (University of Glasgow)

Abstract

Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods based on gradient matching have become popular. However, these methods critically depend on the smoothing scheme for function interpolation. The present article adapts an idea from manifold learning and demonstrates that a time warping approach aiming to homogenize intrinsic length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from two dynamical systems with periodic limit cycle, a biopathway, and an application from soft-tissue mechanics. Our study also provides a comparative evaluation on a wide range of signal-to-noise ratios.

Suggested Citation

  • Mu Niu & Benn Macdonald & Simon Rogers & Maurizio Filippone & Dirk Husmeier, 2018. "Statistical inference in mechanistic models: time warping for improved gradient matching," Computational Statistics, Springer, vol. 33(2), pages 1091-1123, June.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-017-0753-z
    DOI: 10.1007/s00180-017-0753-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0753-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0753-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaolei Xun & Jiguo Cao & Bani Mallick & Arnab Maity & Raymond J. Carroll, 2013. "Parameter Estimation of Partial Differential Equation Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1009-1020, September.
    2. Hulin Wu & Tao Lu & Hongqi Xue & Hua Liang, 2014. "Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 700-716, June.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Joel E Cohen, 2004. "Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better," PLOS Biology, Public Library of Science, vol. 2(12), pages 1-1, December.
    5. Liang, Hua & Wu, Hulin, 2008. "Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1570-1583.
    6. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
    3. Hanwen Huang & Andreas Handel & Xiao Song, 2020. "A Bayesian approach to estimate parameters of ordinary differential equation," Computational Statistics, Springer, vol. 35(3), pages 1481-1499, September.
    4. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    5. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    6. Mu Niu & Joe Wandy & Rónán Daly & Simon Rogers & Dirk Husmeier, 2021. "R package for statistical inference in dynamical systems using kernel based gradient matching: KGode," Computational Statistics, Springer, vol. 36(1), pages 715-747, March.
    7. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    8. Ahn, Kwang Woo & Chan, Kung-Sik, 2014. "Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 243-254.
    9. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    10. Ying Zhu, 2021. "Phase transitions in nonparametric regressions," Papers 2112.03626, arXiv.org, revised Nov 2023.
    11. Bin Zhu & Peter X.-K. Song & Jeremy M.G. Taylor, 2011. "Stochastic Functional Data Analysis: A Diffusion Model-Based Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1295-1304, December.
    12. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
    13. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    14. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
    15. Zhou, Jie, 2015. "Detection of influential measurement for ordinary differential equation with application to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 324-332.
    16. Carey, M. & Ramsay, J.O., 2021. "Fast stable parameter estimation for linear dynamical systems," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    17. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    18. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2017. "Estimating varying coefficients for partial differential equation models," Biometrics, The International Biometric Society, vol. 73(3), pages 949-959, September.
    19. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    20. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-017-0753-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.