IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v127y2019icp342-353.html
   My bibliography  Save this article

Homotopy analysis method for approximations of Duffing oscillator with dual frequency excitations

Author

Listed:
  • Zhang, Guoqi
  • Wu, Zhiqiang

Abstract

In this paper, the classical Duffing oscillator under dual frequency excitations is studied by the homotopy analysis method(HAM). Analytical study of the low-order approximations is firstly conducted and the saddle node(SN) bifurcation boundary for the initial guess solution is obtained. The maximum value bifurcation plot of the high order approximations with the bifurcation parameters f1 and λ1 are obtained and compared with the numerical solutions based on the Runge–Kutta method. The results show that the initial guess solution can qualitatively reflect the trend of the numerical solution, and the high order approximations agree well with the numerical solutions. The maximum value bifurcation plots of high order approximations show periodic and quasi-periodic solutions, which agree well with the numerical ones.

Suggested Citation

  • Zhang, Guoqi & Wu, Zhiqiang, 2019. "Homotopy analysis method for approximations of Duffing oscillator with dual frequency excitations," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 342-353.
  • Handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:342-353
    DOI: 10.1016/j.chaos.2019.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xian-Feng & Chu, Yan-Dong & Leung, Andrew Y.T. & Zhang, Hui, 2017. "Synchronization of uncertain chaotic systems via complete-adaptive-impulsive controls," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 24-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jue & Yuan, Wei-bin & Li, Long-yuan, 2021. "Cross-sectional flattening-induced nonlinear damped vibration of elastic tubes subjected to transverse loads," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huamin, 2018. "The eigenvalues range of a class of matrices and some applications in Cauchy–Schwarz inequality and iterative methods," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 37-48.
    2. Harshavarthini, S. & Sakthivel, R. & Kong, F., 2020. "Finite-time synchronization of chaotic coronary artery system with input time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Weiqiu Pan & Tianzeng Li & Muhammad Sajid & Safdar Ali & Lingping Pu, 2022. "Parameter Identification and the Finite-Time Combination–Combination Synchronization of Fractional-Order Chaotic Systems with Different Structures under Multiple Stochastic Disturbances," Mathematics, MDPI, vol. 10(5), pages 1-26, February.
    4. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    6. Jiling Ding, 2017. "The Hierarchical Iterative Identification Algorithm for Multi-Input-Output-Error Systems with Autoregressive Noise," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    7. Anand, Pallov & Sharma, Bharat Bhushan, 2020. "Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Abinandhitha, R. & Sakthivel, R. & Tatar, N. & Manikandan, R., 2022. "Anti-disturbance observer-based control for fuzzy chaotic semi-Markov jump systems with multiple disturbances and mixed actuator failures," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:342-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.