IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922010918.html
   My bibliography  Save this article

Turing patterns in systems with high-order interactions

Author

Listed:
  • Muolo, Riccardo
  • Gallo, Luca
  • Latora, Vito
  • Frasca, Mattia
  • Carletti, Timoteo

Abstract

Turing theory of pattern formation is among the most popular theoretical means to account for the variety of spatio-temporal structures observed in Nature and, for this reason, finds applications in many different fields. While Turing patterns have been thoroughly investigated on continuous support and on networks, only a few attempts have been made towards their characterization in systems with higher-order interactions. In this paper, we propose a way to include group interactions in reaction–diffusion systems, and we study their effects on the formation of Turing patterns. To achieve this goal, we rewrite the problem originally studied by Turing in a general form that accounts for a microscopic description of interactions of any order in the form of a hypergraph, and we prove that the interplay between the different orders of interaction may either enhance or repress the emergence of Turing patterns. Our results shed light on the mechanisms of pattern-formation in systems with many-body interactions and pave the way for further extensions of Turing original framework.

Suggested Citation

  • Muolo, Riccardo & Gallo, Luca & Latora, Vito & Frasca, Mattia & Carletti, Timoteo, 2023. "Turing patterns in systems with high-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010918
    DOI: 10.1016/j.chaos.2022.112912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. V. Gambuzza & F. Patti & L. Gallo & S. Lepri & M. Romance & R. Criado & M. Frasca & V. Latora & S. Boccaletti, 2021. "Stability of synchronization in simplicial complexes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Malbor Asllani & Timoteo Carletti & Duccio Fanelli & Philip K. Maini, 2020. "A universal route to pattern formation in multicellular systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(7), pages 1-11, July.
    4. Carletti, Timoteo & Muolo, Riccardo, 2022. "Non-reciprocal interactions enhance heterogeneity," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Kumar, Niraj & Horsthemke, Werner, 2010. "Turing bifurcation in a reaction–diffusion system with density-dependent dispersal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1812-1818.
    6. Malbor Asllani & Joseph D. Challenger & Francesco Saverio Pavone & Leonardo Sacconi & Duccio Fanelli, 2014. "The theory of pattern formation on directed networks," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Muolo, Riccardo & Carletti, Timoteo & Bianconi, Ginestra, 2024. "The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Li, Xing & He, Runzi & Xi, Yuxia & Xue, Yakui & Wang, Yunfei & Luo, Xiaofeng, 2024. "The increasing strength of higher-order interactions may homogenize the distribution of infections in Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xing & He, Runzi & Xi, Yuxia & Xue, Yakui & Wang, Yunfei & Luo, Xiaofeng, 2024. "The increasing strength of higher-order interactions may homogenize the distribution of infections in Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Muolo, Riccardo & Carletti, Timoteo & Bianconi, Ginestra, 2024. "The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Vera-Ávila, V.P. & Rivera-Durón, R.R. & Soriano-Garcia, Miguel S. & Sevilla-Escoboza, R. & Buldú, Javier M., 2024. "Electronic implementation of simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    6. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Ramasamy, Mohanasubha & Devarajan, Subhasri & Kumarasamy, Suresh & Rajagopal, Karthikeyan, 2022. "Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    8. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Federico Malizia & Alessandra Corso & Lucia Valentina Gambuzza & Giovanni Russo & Vito Latora & Mattia Frasca, 2024. "Reconstructing higher-order interactions in coupled dynamical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Xu, Can & Zhai, Yun & Wu, Yonggang & Zheng, Zhigang & Guan, Shuguang, 2023. "Enhanced explosive synchronization in heterogeneous oscillator populations with higher-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    15. Keliger, Dániel & Horváth, Illés, 2023. "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Wang, Xuhui & Wu, Jiao & Yang, Zheng & Xu, Kesheng & Wang, Zhengling & Zheng, Muhua, 2024. "The correlation between independent edge and triangle degrees promote the explosive information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    17. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    18. Mock, Andrea & Volić, Ismar, 2021. "Political structures and the topology of simplicial complexes," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 39-57.
    19. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.