IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v29y2006i2p342-348.html
   My bibliography  Save this article

Chaotic synchronization and control in nonlinear-coupled Hindmarsh–Rose neural systems

Author

Listed:
  • Yu, Hongjie
  • Peng, Jianhua

Abstract

A new approach for chaotic synchronization of Hindmarsh–Rose (HR) neural networks linked by special nonlinear coupling function is proposed. The method expands SC method in investigation of chaotic synchronization based on the stability criterion. We provide the error evolutional equation to determine the stability of synchronized states, which has very simple forms corresponding to matrix of star coupling coefficients. The synchronization can be achieved without the requirement to calculate the maximum Lyapunov exponents when the coupling strengths are taken as reference values, and there is a region of stability around them. Besides, the stability criterion control method is applied to control chaotic behaviors of individual Hindmarsh–Rose neuron model. The chaotic orbit is stabilized on 5spike/burst orbit embedded in the chaotic attractor by an input of the nonlinear time-continuous feedback perturbation to membrane potential.

Suggested Citation

  • Yu, Hongjie & Peng, Jianhua, 2006. "Chaotic synchronization and control in nonlinear-coupled Hindmarsh–Rose neural systems," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 342-348.
  • Handle: RePEc:eee:chsofr:v:29:y:2006:i:2:p:342-348
    DOI: 10.1016/j.chaos.2005.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905006570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiang & Che, Yan-Qiu & Zhou, Si-Si & Deng, Bin, 2009. "Unidirectional synchronization of Hodgkin–Huxley neurons exposed to ELF electric field," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1335-1345.
    2. Sabouri, Amir & Ghasemi, Mahdieh & Mehrabbeik, Mahtab, 2023. "The dynamical analysis of non-uniform neocortical network model in up-down state oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Wang, Jiang & Chen, Lisong & Deng, Bin, 2009. "Synchronization of Ghostburster neuron in external electrical stimulation via H∞ variable universe fuzzy adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2076-2085.
    4. Branislav Rehák & Volodymyr Lynnyk, 2021. "Synchronization of a Network Composed of Stochastic Hindmarsh–Rose Neurons," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    5. Sun, Li & Wang, Jiang & Deng, Bin, 2009. "Global synchronization of two Ghostburster neurons via active control," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1213-1220.
    6. Wang, Jiang & Zhang, Zhen & Li, Huiyan, 2008. "Synchronization of FitzHugh–Nagumo systems in EES via H∞ variable universe adaptive fuzzy control," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1332-1339.
    7. Akhmet, Marat & Başkan, Kağan & Yeşil, Cihan, 2024. "Markovian noise-induced delta synchronization approach for Hindmarsh–Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Fang, Xiao-Ling & Yu, Hong-Jie & Jiang, Zong-Lai, 2009. "Chaotic synchronization of nearest-neighbor diffusive coupling Hindmarsh–Rose neural networks in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2426-2441.
    9. Bonacini, E. & Burioni, R. & di Volo, M. & Groppi, M. & Soresina, C. & Vezzani, A., 2016. "How single node dynamics enhances synchronization in neural networks with electrical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 32-43.
    10. Erjaee, G.H., 2009. "Numerical stability of chaotic synchronization using a nonlinear coupling function," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 682-688.
    11. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Jia, Chenhui & Wang, Jiang & Deng, Bin, 2009. "How the self-coupled neuron can affect the chaotic synchronization of network," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1112-1119.
    13. Burić, Nikola & Todorović, Kristina & Vasović, Nebojša, 2009. "Exact synchronization of noisy bursting neurons with coupling delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1127-1135.
    14. Vieira, Robson & Martins, Weliton S. & Barreiro, Sergio & Oliveira, Rafael A. de & Chevrollier, Martine & Oriá, Marcos, 2021. "Synchronization of a nonlinear oscillator with a sum signal from equivalent oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:29:y:2006:i:2:p:342-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.