IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v184y2024ics0960077924005484.html
   My bibliography  Save this article

New spin models in ecology: Super multi-stationarity and chaos

Author

Listed:
  • Sudakow, Ivan
  • Vakulenko, Sergey A.

Abstract

This manuscript introduces a novel spin model that captures the dynamics of ecological systems. We assume that these ecosystems consist of species whose ecological properties are completely determined by their discrete genotypes, and these genotypes are encoded by spin strings. We demonstrate that the Hamiltonian of this spin model can be derived naturally from classical models of population dynamics. Specifically, we establish a connection between the maximization of species abundance and the minimization of the Hamiltonian. The standard mean-field analysis reveals that the proposed spin model corresponds to the well-known Hopfield system, in general, characterized by asymmetric interactions. Remarkably, the resulting Hopfield system can possess an exponential number of local attractors, which, in the case of asymmetric interactions, may be complex. We term this characteristic “super multistationarity”. We also demonstrate that super multistationarity combined with spontaneous symmetry breaking empowers populations to identify optimal genotypes. This adaptation process mirrors the search for solutions in a parallel computer.

Suggested Citation

  • Sudakow, Ivan & Vakulenko, Sergey A., 2024. "New spin models in ecology: Super multi-stationarity and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005484
    DOI: 10.1016/j.chaos.2024.114996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.