IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14301.html
   My bibliography  Save this article

Control of finite critical behaviour in a small-scale social system

Author

Listed:
  • Bryan C. Daniels

    (ASU-SFI Center for Biosocial Complex Systems, Arizona State University)

  • David C. Krakauer

    (ASU-SFI Center for Biosocial Complex Systems, Arizona State University
    Santa Fe Institute)

  • Jessica C. Flack

    (ASU-SFI Center for Biosocial Complex Systems, Arizona State University
    Santa Fe Institute)

Abstract

Many adaptive systems sit near a tipping or critical point. For systems near a critical point small changes to component behaviour can induce large-scale changes in aggregate structure and function. Criticality can be adaptive when the environment is changing, but entails reduced robustness through sensitivity. This tradeoff can be resolved when criticality can be tuned. We address the control of finite measures of criticality using data on fight sizes from an animal society model system (Macaca nemestrina, n=48). We find that a heterogeneous, socially organized system, like homogeneous, spatial systems (flocks and schools), sits near a critical point; the contributions individuals make to collective phenomena can be quantified; there is heterogeneity in these contributions; and distance from the critical point (DFC) can be controlled through biologically plausible mechanisms exploiting heterogeneity. We propose two alternative hypotheses for why a system decreases the distance from the critical point.

Suggested Citation

  • Bryan C. Daniels & David C. Krakauer & Jessica C. Flack, 2017. "Control of finite critical behaviour in a small-scale social system," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14301
    DOI: 10.1038/ncomms14301
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14301
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudakow, Ivan & Vakulenko, Sergey A., 2024. "New spin models in ecology: Super multi-stationarity and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Pascal P Klamser & Pawel Romanczuk, 2021. "Collective predator evasion: Putting the criticality hypothesis to the test," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.