IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924004053.html
   My bibliography  Save this article

Nonlinear Rayleigh-Bénard magnetoconvection of a weakly electrically conducting Newtonian liquid in shallow cylindrical enclosures

Author

Listed:
  • Siddheshwar, P.G.
  • Noor, Arshika S.
  • Tarannum, Sameena
  • Laroze, D.

Abstract

A study of nonlinear axisymmetric Rayleigh-Bénard magnetoconvection in a cylindrical enclosure filled with a dilute concentration of carbon-based nanotubes in a weakly electrically conducting Newtonian liquid heated from below for various aspect ratios is carried out. Cylindrical geometry is the prototype for heat storage devices and thermal coolant systems with a controlled environment. There is an analogy between porous media and magnetohydrodynamic problems and hence Rayleigh-Bénard magnetoconvection problem is practically important. The solution of the velocity and the temperature is in terms of the Bessel functions of the first kind and hyperbolic functions that are further used to study the marginal stability curves, heat transport, and the dynamical system. Symmetric and asymmetric boundaries of the realistic-type are considered on the horizontal and vertical bounding surfaces. The results of these boundaries are compared with those of the idealistic-type which are symmetric. A unified analysis approach is adopted for all boundary combinations in deriving the Lorenz model and studying the nonlinear dynamics. The time-dependent Nusselt numbers incorporating the effect of the curvature of the cylinder accurately captures the enhanced heat transport situation in the regular convective regime. Further, the influence of various parameters on the indicators of chaos such as the rH-plots, Lorenz attractor, bifurcation diagram, and the time series plot is investigated. The rH-plots clearly point to the appearance of chaos and also assist in determining its intensity and periodicity. The trapping region of the solution of the Lorenz model having the shape like that of a rugby-ball is highlighted in the paper. The size of the ellipsoid shrinks with increase in the strength of the magnetic field and also depends on the boundary conditions.

Suggested Citation

  • Siddheshwar, P.G. & Noor, Arshika S. & Tarannum, Sameena & Laroze, D., 2024. "Nonlinear Rayleigh-Bénard magnetoconvection of a weakly electrically conducting Newtonian liquid in shallow cylindrical enclosures," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004053
    DOI: 10.1016/j.chaos.2024.114853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanakapura M. Lakshmi & Laura M. Pérez & Pradeep G. Siddheshwar & David Laroze, 2023. "Theoretical Prediction of the Number of Bénard Cells in Low-Porosity Cylindrical/Rectangular Enclosures Saturated by a Fast Chemically Reacting Fluid," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    2. Khodakaram-Tafti, Amin & Emdad, Homayoun & Mahzoon, Mojtaba, 2024. "Periodicity and chaos of thermal convective flows in annular cylindrical domains using the method of isolation by spectral expansions," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Toghraie, Davood & Karami, Amir & Afrand, Masoud & Karimipour, Arash, 2018. "Effects of geometric parameters on the performance of solar chimney power plants," Energy, Elsevier, vol. 162(C), pages 1052-1061.
    4. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.
    2. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    3. Eusébio Conceição & João Gomes & Maria Manuela Lúcio & Maria Inês Conceição & Hazim Awbi, 2021. "Comparative Study of a Clean Technology Based on DSF Use in Occupied Buildings for Improving Comfort in Winter," Clean Technol., MDPI, vol. 3(2), pages 1-24, April.
    4. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    5. María Nuria Sánchez & Emanuela Giancola & Eduardo Blanco & Silvia Soutullo & María José Suárez, 2019. "Experimental Validation of a Numerical Model of a Ventilated Façade with Horizontal and Vertical Open Joints," Energies, MDPI, vol. 13(1), pages 1-16, December.
    6. Emad Abdelsalam & Fares Almomani & Shadwa Ibrahim & Feras Kafiah & Mohammad Jamjoum & Malek Alkasrawi, 2023. "A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    7. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    8. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    9. Satpathi, Amitabha & Sil, Shreekantha & Chakravarti, Arani, 2020. "Model of a centrifugal-force-aided convective heat engine - An attempt to miniaturise solar updraft tower technology," Energy, Elsevier, vol. 193(C).
    10. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Das, Pritam & Chandramohan, V.P., 2019. "Computational study on the effect of collector cover inclination angle, absorber plate diameter and chimney height on flow and performance parameters of solar updraft tower (SUT) plant," Energy, Elsevier, vol. 172(C), pages 366-379.
    12. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    13. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    14. Xiong, Hanbing & Ming, Tingzhen & Shi, Tianhao & Wu, Yongjia & Li, Wei & de Richter, Renaud & Zhou, Nan, 2024. "Numerical investigation on performance of solar chimney power plant with three wind resistant structures," Energy, Elsevier, vol. 297(C).
    15. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    16. Zhiqiang Wang & Qi Tian & Jie Jia, 2022. "The Convective Heat Transfer Performance and Structural Optimization of the Cavity in Energy-Saving Thermal Insulation Windows under Cold Air Penetration Condition," Energies, MDPI, vol. 15(7), pages 1-21, March.
    17. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    18. Xiang Liu & Wanjiang Wang & Yingjie Ding & Kun Wang & Jie Li & Han Cha & Yeriken Saierpeng, 2024. "Research on the Design Strategy of Double–Skin Facade in Cold and Frigid Regions—Using Xinjiang Public Buildings as an Example," Sustainability, MDPI, vol. 16(11), pages 1-30, June.
    19. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    20. Dimitrios Fidaros & Catherine Baxevanou & Michalina Markousi & Aris Tsangrassoulis, 2022. "Assessment of Various Trombe Wall Geometries with CFD Study," Sustainability, MDPI, vol. 14(9), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.