IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003588.html
   My bibliography  Save this article

Option pricing in the illiquid markets under the mixed fractional Brownian motion model

Author

Listed:
  • Ma, Pengcheng
  • Taghipour, Mehran
  • Cattani, Carlo

Abstract

This paper deals with the option pricing in the illiquid markets under the mixed fractional geometric Brownian motion model with jump process. We propose a general long memory financial model, where its featuring parameters are related to demand and supply by showing also the existence of some restrictions on them. Moreover, by using the delta Hedging strategy and replicating portfolio, we obtain an integro partial differential equation (PIDE) for the option price which is solved by the spectral numerical method with suitable diagonal functions and an infinite series. In particular, by using some operational matrices and Gauss–Hermite quadrature rule, we derive a linear system of algebraic equations solved by a standard collocation method. Moreover, we study the existence and uniqueness of the solution of PIDE and prove the convergence of the numerical scheme. The applicability and efficiency of the collocation method are shown on some nontrivial numerical examples.

Suggested Citation

  • Ma, Pengcheng & Taghipour, Mehran & Cattani, Carlo, 2024. "Option pricing in the illiquid markets under the mixed fractional Brownian motion model," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003588
    DOI: 10.1016/j.chaos.2024.114806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taghipour, M. & Aminikhah, H., 2022. "A spectral collocation method based on fractional Pell functions for solving time–fractional Black–Scholes option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "Analytical valuation for geometric Asian options in illiquid markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 175-191.
    3. Liu, Hong & Yong, Jiongmin, 2005. "Option pricing with an illiquid underlying asset market," Journal of Economic Dynamics and Control, Elsevier, vol. 29(12), pages 2125-2156, December.
    4. Kanne, Stefan & Korn, Olaf & Uhrig-Homburg, Marliese, 2023. "Stock illiquidity and option returns," Journal of Financial Markets, Elsevier, vol. 63(C).
    5. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Foad Shokrollahi & Adem Kılıçman, 2014. "Pricing Currency Option in a Mixed Fractional Brownian Motion with Jumps Environment," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, April.
    7. Wang, Xiao-Tian & Liang, Xiang-Qian & Ren, Fu-Yao & Zhang, Shi-Ying, 2006. "On some generalization of fractional Brownian motions," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 949-957.
    8. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    2. Zhang, Hongyu & Guo, Xunxiang & Wang, Ke & Huang, Shoude, 2024. "The valuation of American options with the stochastic liquidity risk and jump risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    3. Ahmadian, D. & Ballestra, L.V. & Shokrollahi, F., 2022. "A Monte-Carlo approach for pricing arithmetic Asian rainbow options under the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, February.
    5. Gao, Rui & Li, Yaqiong & Lin, Lisha, 2019. "Bayesian statistical inference for European options with stock liquidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 312-322.
    6. Puneet Pasricha & Song-Ping Zhu & Xin-Jiang He, 2022. "A closed-form pricing formula for European options in an illiquid asset market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-18, December.
    7. Xin‐Jiang He & Sha Lin, 2023. "Analytically pricing exchange options with stochastic liquidity and regime switching," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 662-676, May.
    8. He, Xin-Jiang & Pasricha, Puneet & Lin, Sha, 2024. "Analytically pricing European options in dynamic markets: Incorporating liquidity variations and economic cycles," Economic Modelling, Elsevier, vol. 139(C).
    9. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    10. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    11. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    12. Olaf Korn & Paolo Krischak & Erik Theissen, 2019. "Illiquidity transmission from spot to futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1228-1249, October.
    13. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    14. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    15. Loch-Olszewska, Hanna, 2019. "Properties and distribution of the dynamical functional for the fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 252-271.
    16. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.
    17. Zahrah I. Salman & Majid Tavassoli Kajani & Mohammed Sahib Mechee & Masoud Allame, 2023. "Fourth-Order Difference Scheme and a Matrix Transform Approach for Solving Fractional PDEs," Mathematics, MDPI, vol. 11(17), pages 1-15, September.
    18. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    19. Akihiko Inoue & Yumiharu Nakano, 2005. "Optimal long term investment model with memory," Papers math/0506621, arXiv.org, revised May 2006.
    20. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.