IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924001619.html
   My bibliography  Save this article

The chaotic properties and circuit design of a generalized high-dimensional integer-domain system

Author

Listed:
  • Chen, Yuanlin
  • Lu, Tianxiu
  • Wang, Qianxue

Abstract

The purpose of this study is to formulate an innovative approach for creating a higher-dimensional digital chaotic system (HDDCS) within the realm of finite precision. The suggested methodology revolves around generating random sequences to regulate the emergence of chaotic behavior. Rigorous mathematical proofs of the chaotic characteristics of the HDDCS are given, and the nonlinear characteristics of HDIDS are demonstrated by examples. Furthermore, an analog–digital hybrid circuit is developed to design the generalized HDIDS. This study offers substantial theoretical support for the chaotic nature of the HDIDS, and validates the feasibility of chaotic circuit design by simulation.

Suggested Citation

  • Chen, Yuanlin & Lu, Tianxiu & Wang, Qianxue, 2024. "The chaotic properties and circuit design of a generalized high-dimensional integer-domain system," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001619
    DOI: 10.1016/j.chaos.2024.114610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunbiao & Sprott, Julien Clinton & Kapitaniak, Tomasz & Lu, Tianai, 2018. "Infinite lattice of hyperchaotic strange attractors," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 76-82.
    2. Prokhorov, M.D. & Ponomarenko, V.I., 2008. "Encryption and decryption of information in chaotic communication systems governed by delay-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 871-877.
    3. Peng, Yuexi & Sun, Kehui & He, Shaobo, 2020. "A discrete memristor model and its application in Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    4. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Mingjie & Li, Lixiang & Yuan, Zheng, 2024. "A multi-image encryption scheme based on a new n-dimensional chaotic model and eight-base DNA," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Li, Chunbiao & Gu, Zhenyu & Liu, Zuohua & Jafari, Sajad & Kapitaniak, Tomasz, 2021. "Constructing chaotic repellors," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Moskalenko, Olga I. & Koronovskii, Alexey A. & Plotnikova, Anastasiya D., 2021. "Peculiarities of generalized synchronization in unidirectionally and mutually coupled time-delayed systems," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    6. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    7. Li, Yongxin & Li, Chunbiao & Zhong, Qing & Zhao, Yibo & Yang, Yong, 2024. "Coexisting hollow chaotic attractors within a steep parameter interval," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Zhong, Huiyan & Li, Guodong & Xu, Xiangliang, 2022. "A generic voltage-controlled discrete memristor model and its application in chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Zhang, Fangfang & Zhang, Shuaihu & Chen, Guanrong & Li, Chunbiao & Li, Zhengfeng & Pan, Changchun, 2022. "Special attractors and dynamic transport of the hybrid-order complex Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Innocenti, Giacomo & Tesi, Alberto & Di Marco, Mauro & Forti, Mauro, 2024. "First integrals can explain coexistence of attractors, multistability, and loss of ideality in circuits with memristors," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    15. Zhenggang Guo & Junjie Wen & Jun Mou, 2022. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    16. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Wu, Qiujie & Hong, Qinghui & Liu, Xiaoyang & Wang, Xiaoping & Zeng, Zhigang, 2020. "A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. Wei, Zhouchao & Zhu, Bin & Yang, Jing & Perc, Matjaž & Slavinec, Mitja, 2019. "Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 265-281.
    19. Durairaj, Premraj & Premalatha, K. & Kanagaraj, Sathiyadevi & Zheng, Zhigang & Rajagopal, Karthikeyan, 2024. "Emergence of nonchaotic bursting extreme events in a quadratic jerk oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    20. Sivaganesh, G. & Srinivasan, K. & Fozin, T. Fonzin & Pradeep, R. Gladwin, 2023. "Emergence of chaotic hysteresis in a second-order non-autonomous chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.