IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v137y2020ics0960077920302733.html
   My bibliography  Save this article

A discrete memristor model and its application in Hénon map

Author

Listed:
  • Peng, Yuexi
  • Sun, Kehui
  • He, Shaobo

Abstract

The realization of real memristor makes it be a very popular topic in recent years. However, the topic about discrete memristor model is rarely discussed. In this paper, a discrete memristor model is proposed based on the difference theory, and the three fingerprints characteristics are proved for this model according to the definition of the generalized memristor. This discrete model is applied to Hénon map, and we designed a new chaotic map called the discrete memristor-based Hénon map. Its dynamical behaviors are analyzed by attractor phase diagram, bifurcation diagram, Lyapunov exponent spectrum, and spectral entropy complexity algorithm. Simulation results show the performance of Hénon map is improved by applying the discrete memristor.

Suggested Citation

  • Peng, Yuexi & Sun, Kehui & He, Shaobo, 2020. "A discrete memristor model and its application in Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920302733
    DOI: 10.1016/j.chaos.2020.109873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    2. I. Valov & E. Linn & S. Tappertzhofen & S. Schmelzer & J. van den Hurk & F. Lentz & R. Waser, 2013. "Nanobatteries in redox-based resistive switches require extension of memristor theory," Nature Communications, Nature, vol. 4(1), pages 1-9, June.
    3. Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Han & Rong, Kang & Chen, Mo & Zhang, Xi & Bao, Bocheng, 2023. "Multistability and synchronization of discrete maps via memristive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. Innocenti, Giacomo & Tesi, Alberto & Di Marco, Mauro & Forti, Mauro, 2024. "First integrals can explain coexistence of attractors, multistability, and loss of ideality in circuits with memristors," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    9. Chen, Yuanlin & Lu, Tianxiu & Wang, Qianxue, 2024. "The chaotic properties and circuit design of a generalized high-dimensional integer-domain system," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Zhong, Huiyan & Li, Guodong & Xu, Xiangliang, 2022. "A generic voltage-controlled discrete memristor model and its application in chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Li, Yongxin & Li, Chunbiao & Zhong, Qing & Zhao, Yibo & Yang, Yong, 2024. "Coexisting hollow chaotic attractors within a steep parameter interval," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    12. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    13. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    15. Borges, Vinícius S. & Eisencraft, Marcio, 2022. "A filtered Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    16. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Chen, Mo & Ren, Xue & Wu, Huagan & Xu, Quan & Bao, Bocheng, 2020. "Interpreting initial offset boosting via reconstitution in integral domain," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    6. Yunzhen Zhang & Zhong Liu & Mo Chen & Huagan Wu & Shengyao Chen & Bocheng Bao, 2019. "Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    7. Zhang, Xiaohong & Xu, Jingjing & Moshayedi, Ata Jahangir, 2024. "Design and FPGA implementation of a hyperchaotic conservative circuit with initial offset-boosting and transient transition behavior based on memcapacitor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2022. "A mem-element Wien-Bridge circuit with amplitude modulation and three kinds of offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2021. "Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Chen, Mo & Wang, Chao & Bao, Han & Ren, Xue & Bao, Bocheng & Xu, Quan, 2020. "Reconstitution for interpreting hidden dynamics with stable equilibrium point," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Ahmadi, Atefeh & Parthasarathy, Sriram & Natiq, Hayder & Jafari, Sajad & Franović, Igor & Rajagopal, Karthikeyan, 2023. "A non-autonomous mega-extreme multistable chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Bao, Bocheng & Zhang, Xi & Bao, Han & Wu, Pingye & Wu, Zhimin & Chen, Mo, 2019. "Dynamical effects of memristive load on peak current mode buck-boost switching converter," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 69-79.
    17. Bao, Han & Rong, Kang & Chen, Mo & Zhang, Xi & Bao, Bocheng, 2023. "Multistability and synchronization of discrete maps via memristive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Bei Chen & Xinxin Cheng & Han Bao & Mo Chen & Quan Xu, 2022. "Extreme Multistability and Its Incremental Integral Reconstruction in a Non-Autonomous Memcapacitive Oscillator," Mathematics, MDPI, vol. 10(5), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920302733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.