IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s096007792201044x.html
   My bibliography  Save this article

A filtered Hénon map

Author

Listed:
  • Borges, Vinícius S.
  • Eisencraft, Marcio

Abstract

In this paper, we use Lyapunov exponents to analyze how the dynamical properties of the Hénon map change as a function of the coefficients of a linear filter inserted in its feedback loop. We show that the generated orbits can be chaotic or not, depending on the filter coefficients. The dynamics of the system presents complex behavior, including cascades of bifurcations, coexistence of attractors, crises, and “shrimps”. The obtained results are relevant in the context of bandlimited chaos-based communication systems, that have recently been proposed in the literature.

Suggested Citation

  • Borges, Vinícius S. & Eisencraft, Marcio, 2022. "A filtered Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s096007792201044x
    DOI: 10.1016/j.chaos.2022.112865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792201044X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. dos Santos, Vagner & Szezech Jr., José D. & Baptista, Murilo S. & Batista, Antonio M. & Caldas, Iberê L., 2016. "Unstable dimension variability structure in the parameter space of coupled Hénon maps," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 23-28.
    2. Marcio Eisencraft & Renato D. Fanganiello & Luiz A. Baccala, 2009. "Synchronization of Discrete-Time Chaotic Systems in Bandlimited Channels," Mathematical Problems in Engineering, Hindawi, vol. 2009, pages 1-12, June.
    3. Peng, Yuexi & Sun, Kehui & He, Shaobo, 2020. "A discrete memristor model and its application in Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Wanting & Sun, Kehui & He, Shaobo & Wang, Huihai & Liu, Wenhao, 2023. "A class of m-dimension grid multi-cavity hyperchaotic maps and its application," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Li, Yongxin & Li, Chunbiao & Zhong, Qing & Zhao, Yibo & Yang, Yong, 2024. "Coexisting hollow chaotic attractors within a steep parameter interval," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    5. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    6. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Zhong, Huiyan & Li, Guodong & Xu, Xiangliang, 2022. "A generic voltage-controlled discrete memristor model and its application in chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Innocenti, Giacomo & Tesi, Alberto & Di Marco, Mauro & Forti, Mauro, 2024. "First integrals can explain coexistence of attractors, multistability, and loss of ideality in circuits with memristors," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    9. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    13. Chen, Yuanlin & Lu, Tianxiu & Wang, Qianxue, 2024. "The chaotic properties and circuit design of a generalized high-dimensional integer-domain system," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Bao, Han & Rong, Kang & Chen, Mo & Zhang, Xi & Bao, Bocheng, 2023. "Multistability and synchronization of discrete maps via memristive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s096007792201044x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.