IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924001474.html
   My bibliography  Save this article

Collective behavior of self-propelled particles with heterogeneity in both dynamics and delays

Author

Listed:
  • Zhou, Yongjian
  • Wang, Tonghao
  • Lei, Xiaokang
  • Peng, Xingguang

Abstract

Heterogeneity is a common feature in natural swarms, such as variations in mobility, perception ability, etc., among particles. In this study, we investigate the collective behavior considering both dynamic heterogeneity and time delay heterogeneity, based on a model with symmetric attractive forces. Three patterns emerge from our model: translating, ring and rotating states. Through mean-field approximation and bifurcation analysis, we theoretically derive the properties of these three patterns and identify the conditions for switching between these patterns in the parameter space. Based on this analysis, we find that separation occurs in all three patterns, and we analyze the reasons for the separation of different states. Furthermore, we validate the theoretical analysis through particle simulation experiments.

Suggested Citation

  • Zhou, Yongjian & Wang, Tonghao & Lei, Xiaokang & Peng, Xingguang, 2024. "Collective behavior of self-propelled particles with heterogeneity in both dynamics and delays," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001474
    DOI: 10.1016/j.chaos.2024.114596
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Fenglan & Wang, Rui & Zhu, Wei & Li, Yongfu, 2019. "Flocking in nonlinear multi-agent systems with time-varying delay via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 66-77.
    2. Shuguang Li & Richa Batra & David Brown & Hyun-Dong Chang & Nikhil Ranganathan & Chuck Hoberman & Daniela Rus & Hod Lipson, 2019. "Particle robotics based on statistical mechanics of loosely coupled components," Nature, Nature, vol. 567(7748), pages 361-365, March.
    3. Miguel Duarte & Vasco Costa & Jorge Gomes & Tiago Rodrigues & Fernando Silva & Sancho Moura Oliveira & Anders Lyhne Christensen, 2016. "Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Yuangui & Zhang, Yijun & Zhang, Baoyong, 2021. "Fixed-time synchronization of coupled memristive neural networks via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    2. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Da Zhao & Haobo Luo & Yuxiao Tu & Chongxi Meng & Tin Lun Lam, 2024. "Snail-inspired robotic swarms: a hybrid connector drives collective adaptation in unstructured outdoor environments," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Li, Wang & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Sun, Yongzheng, 2023. "Noise-induced consensus of leader-following multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 1-11.
    7. Alexander Ziepke & Ivan Maryshev & Igor S. Aranson & Erwin Frey, 2022. "Multi-scale organization in communicating active matter," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    9. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.