IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v390y1997i6661d10.1038_37757.html
   My bibliography  Save this article

Localization of light in a disordered medium

Author

Listed:
  • Diederik S. Wiersma

    (European Laboratory for Non-Linear Spectroscopy)

  • Paolo Bartolini

    (European Laboratory for Non-Linear Spectroscopy)

  • Ad Lagendijk

    (Van der Waals-Zeeman Laboratory)

  • Roberto Righini

    (European Laboratory for Non-Linear Spectroscopy)

Abstract

Among the unusual transport properties predicted for disordered materials is the Anderson localization1 phenomenon. This is a disorder-induced phase transition in the electron-transport behaviour from the classical diffusion regime, in which the well-known Ohm's law holds, to a localized state in which the material behaves as an insulator. The effect finds its origin in the interference of electrons that have undergone multiple scattering by defects in the solid2,3,4,5,6,7,8,9,10. A similar phenomenon is anticipated for multiple scattering of electromagnetic waves, but with one important simplification: unlike electrons, photons do not interact with one another. This makes transport of photons in disordered materials an ideal model system in which to study Anderson localization10,11,12,13,14,15,16,17. Here we report direct experimental evidence for Anderson localization of light in optical experiments performed on very strongly scattering semiconductor powders.

Suggested Citation

  • Diederik S. Wiersma & Paolo Bartolini & Ad Lagendijk & Roberto Righini, 1997. "Localization of light in a disordered medium," Nature, Nature, vol. 390(6661), pages 671-673, December.
  • Handle: RePEc:nat:nature:v:390:y:1997:i:6661:d:10.1038_37757
    DOI: 10.1038/37757
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/37757
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/37757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Xuefei & Wang, Kaile & Yang, Song & Gao, Yuanmei & Cai, Yangjian & Wen, Zengrun, 2024. "Localization and delocalization of light in synthetic photonic lattices with hybrid Bloch-Anderson modulations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Guillaume Ricard & Filip Novkoski & Eric Falcon, 2024. "Effects of nonlinearity on Anderson localization of surface gravity waves," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:390:y:1997:i:6661:d:10.1038_37757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.