IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000353.html
   My bibliography  Save this article

Unveiling the principles of stochastic resonance and complex potential functions for bearing fault diagnosis

Author

Listed:
  • He, Lifang
  • Jiang, Zhiyuan
  • Chen, Yezi

Abstract

This paper introduces a novel and complex Unsaturated Piecewise Linear Quad-Stable Stochastic Resonance System (UPLQSR) to address the issue of output saturation in the Classical Quad-Stable Stochastic Resonance (CQSR) system. By linearizing the structure of the potential function, the constraints imposed by high-order terms are effectively eliminated, allowing Brownian particles to move more freely. Numerical simulations demonstrate that UPLQSR achieves significantly higher output signal amplitudes compared to CQSR, highlighting its remarkable signal amplification capability. By analyzing the structure of the potential function, the relationship between the height of the potential barrier and the aggressiveness of the particles jumping is determined. Utilizing adiabatic approximation theory, the paper derives the Steady-state Probability Density (SPD), Mean First Passage Time (MFPT), and Spectral Amplification (SA), revealing the specific process of the particle jumping, as well as the influence of the parameters on the performance of the UPLQSR. After optimizing parameters using the Adaptive Genetic Algorithm (GA), UPLQSR is applied to the early fault diagnosis of various bearing models under Gaussian white noise, demonstrating superior fault detection capabilities. In summary, this study pioneered the theory of non-saturation of quad-stable systems, optimized the weak signal detection technique, and provided a more accurate means of signal identification and analysis, highlighting its great value of application in engineering.

Suggested Citation

  • He, Lifang & Jiang, Zhiyuan & Chen, Yezi, 2024. "Unveiling the principles of stochastic resonance and complex potential functions for bearing fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000353
    DOI: 10.1016/j.chaos.2024.114484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Palabas, Tugba & Torres, Joaquín J. & Perc, Matjaž & Uzuntarla, Muhammet, 2023. "Double stochastic resonance in neuronal dynamics due to astrocytes," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Zhang, Gang & Shu, Yichen & Zhang, Tianqi, 2022. "The study on dynamical behavior of FitzHugh–Nagumo neural model under the co-excitation of non-Gaussian and colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    4. Silver, Steven D. & Raseta, Marko & Bazarova, Alina, 2023. "Stochastic resonance in the recovery of signal from agent price expectations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Zhou, Zuanbo & Yu, Wenxin & Wang, Junnian & Liu, Meiting, 2022. "A high dimensional stochastic resonance system and its application in signal processing," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    6. Ma, Tianchi & Shen, Junxian & Song, Di & Xu, Feiyun, 2022. "Unsaturated piecewise bistable stochastic resonance with three kinds of asymmetries driven by multiplicative and additive noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Ma, Tianchi & Song, Di & Shen, Junxian & Xu, Feiyun, 2022. "Unsaturated piecewise bistable stochastic resonance with three kinds of asymmetries and time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Xu, Pengfei & Jin, Yanfei, 2018. "Stochastic resonance in multi-stable coupled systems driven by two driving signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1281-1289.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jinjie & Zhao, Feng & Li, Yang & Liu, Xianbin, 2024. "Rotational stochastic resonance in multistable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    2. Zhang, Gang & Chen, Yezi & Xu, Lianbing, 2024. "Multi-dimensional hybrid potential stochastic resonance and application of bearing fault diagnosis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    3. Suo, Jian & Wang, Haiyan & Lian, Wei & Dong, Haitao & Shen, Xiaohong & Yan, Yongsheng, 2023. "Feed-forward cascaded stochastic resonance and its application in ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Erkan, Erdem, 2023. "Signal encoding performance of astrocyte-dressed Morris Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Calim, Ali & Baysal, Veli, 2023. "Chaotic resonance in an astrocyte-coupled excitable neuron," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. He, Lifang & Wu, Xia & Zhang, Gang, 2020. "Stochastic resonance in coupled fractional-order linear harmonic oscillators with damping fluctuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Zhang, Gang & Liu, Xiaoman & Zhang, Tianqi, 2022. "Two-Dimensional Tri-stable Stochastic Resonance system and its application in bearing fault detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    10. Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Hollerbach, Rainer & Kim, Eun-jin & Mahi, Yanis, 2019. "Information length as a new diagnostic in the periodically modulated double-well model of stochastic resonance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1313-1322.
    12. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    13. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    14. Xu, Pengfei & Jin, Yanfei & Zhang, Yanxia, 2019. "Stochastic resonance in an underdamped triple-well potential system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 352-362.
    15. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Wu, Jianjun & Xia, Lu, 2024. "Double well stochastic resonance for a class of three-dimensional financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    17. Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    18. Bi, Haohao & Lei, Youming & Han, Yanyan, 2019. "Stochastic resonance across bifurcations in an asymmetric system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1296-1312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.