IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012730.html
   My bibliography  Save this article

Geometric phase and Wehrl phase entropy for two superconducting qubits in a coherent field system under the effect of nonlinear medium

Author

Listed:
  • Berrada, K.
  • Sabik, A.
  • Khalil, E.M.
  • Abdel-Khalek, S.

Abstract

In this paper, we study the dynamical behavior of coherence, geometric phase, Wehrl entropy (WE) for a quantum model consisting of two superconducting qubits (SC–Qs) in the presence of multi-photon transition. We develop the Hamiltonian model and solve the Schrödinger equation that leads to evaluate the density matrix of whole system as well as subsystems. We introduce the effects of nonlinearity and subsystems interaction and display the temporal behavior of different quantumness measures in the existence and absence of nonlinear Kerr medium and Ising interaction.

Suggested Citation

  • Berrada, K. & Sabik, A. & Khalil, E.M. & Abdel-Khalek, S., 2024. "Geometric phase and Wehrl phase entropy for two superconducting qubits in a coherent field system under the effect of nonlinear medium," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012730
    DOI: 10.1016/j.chaos.2023.114371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan A. Jones & Vlatko Vedral & Artur Ekert & Giuseppe Castagnoli, 2000. "Geometric quantum computation using nuclear magnetic resonance," Nature, Nature, vol. 403(6772), pages 869-871, February.
    2. A. Wallraff & D. I. Schuster & A. Blais & L. Frunzio & R.- S. Huang & J. Majer & S. Kumar & S. M. Girvin & R. J. Schoelkopf, 2004. "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature, Nature, vol. 431(7005), pages 162-167, September.
    3. John Clarke & Frank K. Wilhelm, 2008. "Superconducting quantum bits," Nature, Nature, vol. 453(7198), pages 1031-1042, June.
    4. Y. Nakamura & Yu. A. Pashkin & J. S. Tsai, 1999. "Coherent control of macroscopic quantum states in a single-Cooper-pair box," Nature, Nature, vol. 398(6730), pages 786-788, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Abdel-Khalek, S. & Berrada, K. & Aldaghfag, Shatha A., 2021. "Quantum correlations and non-classical properties for two superconducting qubits interacting with a quantized field in the context of deformed Heisenberg algebra," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. F. Hassani & M. Peruzzo & L. N. Kapoor & A. Trioni & M. Zemlicka & J. M. Fink, 2023. "Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hu, Gaoke & Liu, Maoxin & Chen, Xiaosong, 2023. "Quantum phase transition and eigen microstate condensation in the quantum Rabi model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Atsushi Sakaguchi & Shunya Konno & Fumiya Hanamura & Warit Asavanant & Kan Takase & Hisashi Ogawa & Petr Marek & Radim Filip & Jun-ichi Yoshikawa & Elanor Huntington & Hidehiro Yonezawa & Akira Furusa, 2023. "Nonlinear feedforward enabling quantum computation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Gupta, Shivam & Modgil, Sachin & Bhatt, Priyanka C. & Chiappetta Jabbour, Charbel Jose & Kamble, Sachin, 2023. "Quantum computing led innovation for achieving a more sustainable Covid-19 healthcare industry," Technovation, Elsevier, vol. 120(C).
    8. Yu Zhou & Zhenxing Zhang & Zelong Yin & Sainan Huai & Xiu Gu & Xiong Xu & Jonathan Allcock & Fuming Liu & Guanglei Xi & Qiaonian Yu & Hualiang Zhang & Mengyu Zhang & Hekang Li & Xiaohui Song & Zhan Wa, 2021. "Rapid and unconditional parametric reset protocol for tunable superconducting qubits," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Ramadoss, Janarthanan & Ngongiah, Isidore Komofor & Chamgoué, André Chéagé & Kingni, Sifeu Takougang & Rajagopal, Karthikeyan, 2023. "Fractal resistive–capacitive–inductive shunted Josephson junction: Theoretical investigation and microcontroller implementation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    11. Rishabh Upadhyay & Dmitry S. Golubev & Yu-Cheng Chang & George Thomas & Andrew Guthrie & Joonas T. Peltonen & Jukka P. Pekola, 2024. "Microwave quantum diode," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Daisuke Iyama & Takahiko Kamiya & Shiori Fujii & Hiroto Mukai & Yu Zhou & Toshiaki Nagase & Akiyoshi Tomonaga & Rui Wang & Jiao-Jiao Xue & Shohei Watabe & Sangil Kwon & Jaw-Shen Tsai, 2024. "Observation and manipulation of quantum interference in a superconducting Kerr parametric oscillator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Li, Wenlin & Li, Chong & Song, Heshan, 2016. "Realization of quantum information processing in quantum star network constituted by superconducting hybrid systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 427-436.
    15. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Ya. S. Greenberg & O. A. Chuikin, 2022. "Superradiant emission spectra of a two-qubit system in circuit quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-19, September.
    17. Slaoui, Abdallah & Salah, Ahmed & Daoud, Mohammed, 2020. "Influence of Stark-shift on quantum coherence and non-classical correlations for two two-level atoms interacting with a single-mode cavity field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    18. Humire, Fernando R. & Zárate, Yair D. & Joglekar, Yogesh N. & García-Ñustes, Mónica A., 2023. "Classical Rabi oscillations induced by unbalanced dissipation on a nonlinear dimer," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Skagerstam, Bo-Sture K., 2006. "On collective effects in cavity quantum electrodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 314-326.
    20. Ievgen I. Arkhipov & Adam Miranowicz & Fabrizio Minganti & Şahin K. Özdemir & Franco Nori, 2023. "Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.