IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6772d10.1038_35002528.html
   My bibliography  Save this article

Geometric quantum computation using nuclear magnetic resonance

Author

Listed:
  • Jonathan A. Jones

    (Centre for Quantum Computation, Clarendon Laboratory
    Oxford Centre for Molecular Sciences, New Chemistry Laboratory)

  • Vlatko Vedral

    (Centre for Quantum Computation, Clarendon Laboratory)

  • Artur Ekert

    (Centre for Quantum Computation, Clarendon Laboratory)

  • Giuseppe Castagnoli

    (Elsag, Via Puccini 2)

Abstract

A significant development in computing has been the discovery1 that the computational power of quantum computers exceeds that of Turing machines. Central to the experimental realization of quantum information processing is the construction of fault-tolerant quantum logic gates. Their operation requires conditional quantum dynamics, in which one sub-system undergoes a coherent evolution that depends on the quantum state of another sub-system2; in particular, the evolving sub-system may acquire a conditional phase shift. Although conventionally dynamic in origin, phase shifts can also be geometric3,4. Conditional geometric (or ‘Berry’) phases depend only on the geometry of the path executed, and are therefore resilient to certain types of errors; this suggests the possibility of an intrinsically fault-tolerant way of performing quantum gate operations. Nuclear magnetic resonance techniques have already been used to demonstrate both simple quantum information processing5,6,7,8,9 and geometric phase shifts10,11,12. Here we combine these ideas by performing a nuclear magnetic resonance experiment in which a conditional Berry phase is implemented, demonstrating a controlled phase shift gate.

Suggested Citation

  • Jonathan A. Jones & Vlatko Vedral & Artur Ekert & Giuseppe Castagnoli, 2000. "Geometric quantum computation using nuclear magnetic resonance," Nature, Nature, vol. 403(6772), pages 869-871, February.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6772:d:10.1038_35002528
    DOI: 10.1038/35002528
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35002528
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35002528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berrada, K. & Sabik, A. & Khalil, E.M. & Abdel-Khalek, S., 2024. "Geometric phase and Wehrl phase entropy for two superconducting qubits in a coherent field system under the effect of nonlinear medium," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Ievgen I. Arkhipov & Adam Miranowicz & Fabrizio Minganti & Şahin K. Özdemir & Franco Nori, 2023. "Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6772:d:10.1038_35002528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.