IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7005d10.1038_nature02851.html
   My bibliography  Save this article

Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics

Author

Listed:
  • A. Wallraff

    (Yale University)

  • D. I. Schuster

    (Yale University)

  • A. Blais

    (Yale University)

  • L. Frunzio

    (Yale University)

  • R.- S. Huang

    (Yale University
    Indiana University)

  • J. Majer

    (Yale University)

  • S. Kumar

    (Yale University)

  • S. M. Girvin

    (Yale University)

  • R. J. Schoelkopf

    (Yale University)

Abstract

The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics1 for several decades and has generated the field of cavity quantum electrodynamics2,3. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.

Suggested Citation

  • A. Wallraff & D. I. Schuster & A. Blais & L. Frunzio & R.- S. Huang & J. Majer & S. Kumar & S. M. Girvin & R. J. Schoelkopf, 2004. "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature, Nature, vol. 431(7005), pages 162-167, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7005:d:10.1038_nature02851
    DOI: 10.1038/nature02851
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02851
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Hassani & M. Peruzzo & L. N. Kapoor & A. Trioni & M. Zemlicka & J. M. Fink, 2023. "Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yu Zhou & Zhenxing Zhang & Zelong Yin & Sainan Huai & Xiu Gu & Xiong Xu & Jonathan Allcock & Fuming Liu & Guanglei Xi & Qiaonian Yu & Hualiang Zhang & Mengyu Zhang & Hekang Li & Xiaohui Song & Zhan Wa, 2021. "Rapid and unconditional parametric reset protocol for tunable superconducting qubits," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Ya. S. Greenberg & O. A. Chuikin, 2022. "Superradiant emission spectra of a two-qubit system in circuit quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-19, September.
    5. Skagerstam, Bo-Sture K., 2006. "On collective effects in cavity quantum electrodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 314-326.
    6. Hu, Gaoke & Liu, Maoxin & Chen, Xiaosong, 2023. "Quantum phase transition and eigen microstate condensation in the quantum Rabi model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    8. Berrada, K. & Sabik, A. & Khalil, E.M. & Abdel-Khalek, S., 2024. "Geometric phase and Wehrl phase entropy for two superconducting qubits in a coherent field system under the effect of nonlinear medium," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7005:d:10.1038_nature02851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.