IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39195-w.html
   My bibliography  Save this article

Nonlinear feedforward enabling quantum computation

Author

Listed:
  • Atsushi Sakaguchi

    (The University of Tokyo
    RIKEN Center for Quantum Computing)

  • Shunya Konno

    (The University of Tokyo)

  • Fumiya Hanamura

    (The University of Tokyo)

  • Warit Asavanant

    (The University of Tokyo
    RIKEN Center for Quantum Computing)

  • Kan Takase

    (The University of Tokyo
    RIKEN Center for Quantum Computing)

  • Hisashi Ogawa

    (The University of Tokyo)

  • Petr Marek

    (Palacký University)

  • Radim Filip

    (Palacký University)

  • Jun-ichi Yoshikawa

    (The University of Tokyo
    RIKEN Center for Quantum Computing)

  • Elanor Huntington

    (Australian National University)

  • Hidehiro Yonezawa

    (University of New South Wales)

  • Akira Furusawa

    (The University of Tokyo
    RIKEN Center for Quantum Computing)

Abstract

Measurement-based quantum computation with optical time-domain multiplexing is a promising method to realize a quantum computer from the viewpoint of scalability. Fault tolerance and universality are also realizable by preparing appropriate resource quantum states and electro-optical feedforward that is altered based on measurement results. While linear feedforward has been realized and become a common experimental technique, nonlinear feedforward was unrealized until now. In this paper, we demonstrate that a fast and flexible nonlinear feedforward realizes the essential measurement required for fault-tolerant and universal quantum computation. Using non-Gaussian ancillary states, we observed 10% reduction of the measurement excess noise relative to classical vacuum ancilla.

Suggested Citation

  • Atsushi Sakaguchi & Shunya Konno & Fumiya Hanamura & Warit Asavanant & Kan Takase & Hisashi Ogawa & Petr Marek & Radim Filip & Jun-ichi Yoshikawa & Elanor Huntington & Hidehiro Yonezawa & Akira Furusa, 2023. "Nonlinear feedforward enabling quantum computation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39195-w
    DOI: 10.1038/s41467-023-39195-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39195-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39195-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. Nakamura & Yu. A. Pashkin & J. S. Tsai, 1999. "Coherent control of macroscopic quantum states in a single-Cooper-pair box," Nature, Nature, vol. 398(6730), pages 786-788, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Slaoui, Abdallah & Salah, Ahmed & Daoud, Mohammed, 2020. "Influence of Stark-shift on quantum coherence and non-classical correlations for two two-level atoms interacting with a single-mode cavity field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    4. Berrada, K. & Sabik, A. & Khalil, E.M. & Abdel-Khalek, S., 2024. "Geometric phase and Wehrl phase entropy for two superconducting qubits in a coherent field system under the effect of nonlinear medium," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Abdel-Khalek, S. & Berrada, K. & Aldaghfag, Shatha A., 2021. "Quantum correlations and non-classical properties for two superconducting qubits interacting with a quantized field in the context of deformed Heisenberg algebra," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Gupta, Shivam & Modgil, Sachin & Bhatt, Priyanka C. & Chiappetta Jabbour, Charbel Jose & Kamble, Sachin, 2023. "Quantum computing led innovation for achieving a more sustainable Covid-19 healthcare industry," Technovation, Elsevier, vol. 120(C).
    7. F. Hassani & M. Peruzzo & L. N. Kapoor & A. Trioni & M. Zemlicka & J. M. Fink, 2023. "Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Humire, Fernando R. & Zárate, Yair D. & Joglekar, Yogesh N. & García-Ñustes, Mónica A., 2023. "Classical Rabi oscillations induced by unbalanced dissipation on a nonlinear dimer," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Daisuke Iyama & Takahiko Kamiya & Shiori Fujii & Hiroto Mukai & Yu Zhou & Toshiaki Nagase & Akiyoshi Tomonaga & Rui Wang & Jiao-Jiao Xue & Shohei Watabe & Sangil Kwon & Jaw-Shen Tsai, 2024. "Observation and manipulation of quantum interference in a superconducting Kerr parametric oscillator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39195-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.