IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012365.html
   My bibliography  Save this article

A machine learning method to explore the glymphatic system via poroelastodynamics

Author

Listed:
  • Chou, Dean
  • Chen, Po-Yen

Abstract

Until recently, scientists thought that waste was cleared from the central nervous system primarily by diffusion, with waste slowly moving from the brain tissue toward the blood vessels. However, scientists have discovered a dedicated macroscopic waste clearance system, called glymphatic system, that performs efficient waste elimination through a unique system of perivascular channels formed by astrocytes, a type of glia. To better understand the complex dynamics of fluid movements in the glymphatic system, we implemented a four-compartmental poroelasticity model of the cerebral environment and used the model in a systematic and efficient parametric study aided by machine learning, a physiologically inspired perceptron method, to explore the functional impact of water transfer coefficients. The results suggested that the model captured the transport phenomenon of human brain. Moreover, within a specific distribution range of water transfer coefficients, the model indirectly predicts the existence of the glymphatic system, providing theoretical support to the glymphatic theory. Our study also demonstrates the feasibility of discovering physiological properties of complex biological systems through computer-aided modeling. Meanwhile, the presented novel method shown its potential for parametric study.

Suggested Citation

  • Chou, Dean & Chen, Po-Yen, 2024. "A machine learning method to explore the glymphatic system via poroelastodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012365
    DOI: 10.1016/j.chaos.2023.114334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauren M. Hablitz & Virginia Plá & Michael Giannetto & Hanna S. Vinitsky & Frederik Filip Stæger & Tanner Metcalfe & Rebecca Nguyen & Abdellatif Benrais & Maiken Nedergaard, 2020. "Circadian control of brain glymphatic and lymphatic fluid flow," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Antoine Louveau & Igor Smirnov & Timothy J. Keyes & Jacob D. Eccles & Sherin J. Rouhani & J. David Peske & Noel C. Derecki & David Castle & James W. Mandell & Kevin S. Lee & Tajie H. Harris & Jonathan, 2015. "Structural and functional features of central nervous system lymphatic vessels," Nature, Nature, vol. 523(7560), pages 337-341, July.
    3. Chou, Dean & Chen, Po-Yen, 2023. "A perceptron-based learning method for solving the inverse problem of the brain model via poroelastodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Per Kristian Eide & Aslan Lashkarivand & Are Pripp & Lars Magnus Valnes & Markus Herberg Hovd & Geir Ringstad & Kaj Blennow & Henrik Zetterberg, 2023. "Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Xiang He & Daiqin Xiong & Lei Zhao & Jialong Fu & Lingfei Luo, 2024. "Meningeal lymphatic supporting cells govern the formation and maintenance of zebrafish mural lymphatic endothelial cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Carolin Beuker & David Schafflick & Jan-Kolja Strecker & Michael Heming & Xiaolin Li & Jolien Wolbert & Antje Schmidt-Pogoda & Christian Thomas & Tanja Kuhlmann & Irene Aranda-Pardos & Noelia A-Gonzal, 2022. "Stroke induces disease-specific myeloid cells in the brain parenchyma and pia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Miao Wang & Congcong Yan & Xi Li & Tianhao Yang & Shengnan Wu & Qian Liu & Qingming Luo & Feifan Zhou, 2024. "Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Geir Ringstad & Per Kristian Eide, 2023. "The pitfalls of interpreting hyperintense FLAIR signal as lymph outside the human brain," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    6. Dongyu Li & Shaojun Liu & Tingting Yu & Zhang Liu & Silin Sun & Denis Bragin & Alexander Shirokov & Nikita Navolokin & Olga Bragina & Zhengwu Hu & Jürgen Kurths & Ivan Fedosov & Inna Blokhina & Alexan, 2023. "Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Weiping Dai & Mengqian Yang & Pei Xia & Chuan Xiao & Shuying Huang & Zhan Zhang & Xin Cheng & Wenchang Li & Jian Jin & Jingyun Zhang & Binghuo Wu & Yingying Zhang & Pei-hui Wu & Yangyang Lin & Wen Wu , 2022. "A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Per Kristian Eide & Geir Ringstad, 2024. "Functional analysis of the human perivascular subarachnoid space," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Yogi H. Hendlin, 2022. "Plant Philosophy and Interpretation: Making Sense of Contemporary Plant Intelligence Debates," Environmental Values, , vol. 31(3), pages 253-276, June.
    10. Nicola A. Kearns & Artemis Iatrou & Daniel J. Flood & Sashini Tissera & Zachary M. Mullaney & Jishu Xu & Chris Gaiteri & David A. Bennett & Yanling Wang, 2023. "Dissecting the human leptomeninges at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Hadi Abou-El-Hassan & Rafael M. Rezende & Saef Izzy & Galina Gabriely & Taha Yahya & Bruna K. Tatematsu & Karl J. Habashy & Juliana R. Lopes & Gislane L. V. Oliveira & Amir-Hadi Maghzi & Zhuoran Yin &, 2023. "Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Susana Lozano-Tovar & Yaneth Rodríguez-Agudelo & David José Dávila-Ortiz de Montellano & Blanca Estela Pérez-Aldana & Alberto Ortega-Vázquez & Nancy Monroy-Jaramillo, 2023. "Relationship between APOE , PER2 , PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease," IJERPH, MDPI, vol. 20(5), pages 1-14, March.
    13. Ryann M. Fame & Peter N. Kalugin & Boryana Petrova & Huixin Xu & Paul A. Soden & Frederick B. Shipley & Neil Dani & Bradford Grant & Aja Pragana & Joshua P. Head & Suhasini Gupta & Morgan L. Shannon &, 2023. "Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Josephine A. Mapunda & Javier Pareja & Mykhailo Vladymyrov & Elisa Bouillet & Pauline Hélie & Petr Pleskač & Sara Barcos & Johanna Andrae & Dietmar Vestweber & Donald M. McDonald & Christer Betsholtz , 2023. "VE-cadherin in arachnoid and pia mater cells serves as a suitable landmark for in vivo imaging of CNS immune surveillance and inflammation," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    15. Anastasia Mozokhina & Rostislav Savinkov, 2020. "Mathematical Modelling of the Structure and Function of the Lymphatic System," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    16. Shinji Naganawa & Yutaka Kato & Tadao Yoshida & Michihiko Sone, 2023. "Fluid signal suppression characteristics of 3D-FLAIR with a T2 selective inversion pulse in the skull base," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    17. Shelei Pan & Peter H. Yang & Dakota DeFreitas & Sruthi Ramagiri & Peter O. Bayguinov & Carl D. Hacker & Abraham Z. Snyder & Jackson Wilborn & Hengbo Huang & Gretchen M. Koller & Dhvanii K. Raval & Gra, 2023. "Gold nanoparticle-enhanced X-ray microtomography of the rodent reveals region-specific cerebrospinal fluid circulation in the brain," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Laura Bojarskaite & Alexandra Vallet & Daniel M. Bjørnstad & Kristin M. Gullestad Binder & Céline Cunen & Kjell Heuser & Miroslav Kuchta & Kent-Andre Mardal & Rune Enger, 2023. "Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.