IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011438.html
   My bibliography  Save this article

Lie symmetry analysis for the Cargo–Leroux model with isentropic perturbation pressure equation of state

Author

Listed:
  • Karna, Ashutosh Kumar
  • Satapathy, Purnima

Abstract

In this article, the well-known Cargo–Leroux model with isentropic perturbation equation of state is analyzed using the Lie symmetry method. By using invariant conditions of system of partial differential equations, six dimensional Lie algebra is obtained. The optimal system for system of partial differential equations is constructed using adjoint representation and the invariants of associated Lie algebras of the system. Further, with the help of one-dimensional optimal system invariant solutions are constructed. Also, physically significant solutions such as traveling wave solutions, specifically the kink-type solitons and peakon-type solitons are obtained by using traveling wave transformations and all the solutions are graphically demonstrated. Finally, the hyperbolic nature of system of partial differential equations is examined by studying the evolutionary behavior of a discontinuity wave.

Suggested Citation

  • Karna, Ashutosh Kumar & Satapathy, Purnima, 2023. "Lie symmetry analysis for the Cargo–Leroux model with isentropic perturbation pressure equation of state," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011438
    DOI: 10.1016/j.chaos.2023.114241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jana, Sumita & Kuila, Sahadeb, 2022. "Exact solution of the flux perturbed Riemann problem for Cargo-LeRoux model in a van der Waals gas," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Sil, Subhankar & Raja Sekhar, T. & Zeidan, Dia, 2020. "Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Satapathy, Purnima & Raja Sekhar, T., 2018. "Optimal system, invariant solutions and evolution of weak discontinuity for isentropic drift flux model," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 107-116.
    4. Kumar, Sachin & Kumar, Dharmendra & Kumar, Amit, 2021. "Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shagolshem, Sumanta & Bira, B. & Zeidan, D., 2023. "Optimal subalgebras and conservation laws with exact solutions for biological population model," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Sil, Subhankar & Raja Sekhar, T., 2023. "Nonclassical potential symmetry analysis and exact solutions for a thin film model of a perfectly soluble anti-surfactant solution," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    3. Manjit Singh & Shou-Fu Tian, 2023. "Lie symmetries, group classification and conserved quantities of dispersionless Manakov–Santini system in (2+1)-dimension," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 312-329, June.
    4. Shagolshem, Sumanta & Bira, B. & Sil, Subhankar, 2022. "Conservation laws and some new exact solutions for traffic flow model via symmetry analysis," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Shah, Sarswati & Singh, Randheer & Jena, Jasobanta, 2022. "Steepened wave in two-phase Chaplygin flows comprising a source term," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Simon, S. Gimnitz & Bira, B. & Zeidan, Dia, 2023. "Optimal systems, series solutions and conservation laws for a time fractional cancer tumor model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Minhajul, & Mondal, Rakib, 2023. "Wave interaction in isothermal drift-flux model of two-phase flows," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Kumar, Sachin & Kumar, Amit, 2022. "Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 254-274.
    9. Kumar, Sachin & Dhiman, Shubham Kumar & Chauhan, Astha, 2022. "Symmetry reductions, generalized solutions and dynamics of wave profiles for the (2+1)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 319-335.
    10. Silambarasan, Rathinavel & Baskonus, Haci Mehmet & Vijay Anand, R. & Dinakaran, M. & Balusamy, Balamurugan & Gao, Wei, 2021. "Longitudinal strain waves propagating in an infinitely long cylindrical rod composed of generally incompressible materials and its Jacobi elliptic function solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 566-602.
    11. Melike Kaplan & Arzu Akbulut & Rubayyi T. Alqahtani, 2023. "New Solitary Wave Patterns of the Fokas System in Fiber Optics," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    12. Bashir, Azhar & Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R., 2022. "The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    13. K. Krishnakumar & A. Durga Devi & V. Srinivasan & P. G. L. Leach, 2023. "Optimal system, similarity solution and Painlevé test on generalized modified Camassa-Holm equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 547-557, June.
    14. Aly R. Seadawy & Hanadi Zahed & Syed T. R. Rizvi, 2022. "Diverse Forms of Breathers and Rogue Wave Solutions for the Complex Cubic Quintic Ginzburg Landau Equation with Intrapulse Raman Scattering," Mathematics, MDPI, vol. 10(11), pages 1-22, May.
    15. Sil, Subhankar & Raja Sekhar, T. & Zeidan, Dia, 2020. "Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.