IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1810-d1120544.html
   My bibliography  Save this article

New Solitary Wave Patterns of the Fokas System in Fiber Optics

Author

Listed:
  • Melike Kaplan

    (Faculty of Engineering and Architecture, Department of Computer Engineering, Kastamonu University, 37150 Kastamonu, Turkey)

  • Arzu Akbulut

    (Faculty of Art and Sciences, Department of Mathematics, Bursa Uludag University, 16059 Bursa, Turkey)

  • Rubayyi T. Alqahtani

    (Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia)

Abstract

The Fokas system, which models wave dynamics using a single model of fiber optics, is the design under discussion in this study. Different types of solitary wave solutions are obtained by utilizing generalized Kudryashov (GKP) and modified Kudryashov procedures (MKP). These novel concepts make use of symbolic computations to come up with a dynamic and powerful mathematical approach for dealing with a variety of nonlinear wave situations. The results obtained in this paper are original and have the potential to be useful in mathematical physics.

Suggested Citation

  • Melike Kaplan & Arzu Akbulut & Rubayyi T. Alqahtani, 2023. "New Solitary Wave Patterns of the Fokas System in Fiber Optics," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1810-:d:1120544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Sachin & Kumar, Dharmendra & Kumar, Amit, 2021. "Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gleb Vodinchar & Liubov Feshchenko, 2023. "Computational Technology for the Basis and Coefficients of Geodynamo Spectral Models in the Maple System," Mathematics, MDPI, vol. 11(13), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashir, Azhar & Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R., 2022. "The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Karna, Ashutosh Kumar & Satapathy, Purnima, 2023. "Lie symmetry analysis for the Cargo–Leroux model with isentropic perturbation pressure equation of state," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Kumar, Sachin & Kumar, Amit, 2022. "Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 254-274.
    4. Aly R. Seadawy & Hanadi Zahed & Syed T. R. Rizvi, 2022. "Diverse Forms of Breathers and Rogue Wave Solutions for the Complex Cubic Quintic Ginzburg Landau Equation with Intrapulse Raman Scattering," Mathematics, MDPI, vol. 10(11), pages 1-22, May.
    5. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Kumar, Sachin & Dhiman, Shubham Kumar & Chauhan, Astha, 2022. "Symmetry reductions, generalized solutions and dynamics of wave profiles for the (2+1)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 319-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1810-:d:1120544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.