IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v413y2022ics0096300321007402.html
   My bibliography  Save this article

Steepened wave in two-phase Chaplygin flows comprising a source term

Author

Listed:
  • Shah, Sarswati
  • Singh, Randheer
  • Jena, Jasobanta

Abstract

This manuscript brings some qualitative features of steepened wave in isentropic Chaplygin two-phase flows with a non-constant source term via Lie group transformation. The transport equation for steepened wave is determined. The behaviour of amplitude of steepened wave is investigated using the numerical solution of the system. The effects of inclination of the flow on the amplitude of singular surface are also shown.

Suggested Citation

  • Shah, Sarswati & Singh, Randheer & Jena, Jasobanta, 2022. "Steepened wave in two-phase Chaplygin flows comprising a source term," Applied Mathematics and Computation, Elsevier, vol. 413(C).
  • Handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321007402
    DOI: 10.1016/j.amc.2021.126656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321007402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuila, S. & Raja Sekhar, T., 2018. "Interaction of weak shocks in drift-flux model of compressible two-phase flows," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 222-227.
    2. Minhajul, & Zeidan, D. & Raja Sekhar, T., 2018. "On the wave interactions in the drift-flux equations of two-phase flows," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 117-131.
    3. Satapathy, Purnima & Raja Sekhar, T., 2018. "Optimal system, invariant solutions and evolution of weak discontinuity for isentropic drift flux model," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 107-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Chen & Weifeng Jiang & Tong Li & Zhen Wang & Junhao Lin, 2024. "Riemann Problem for the Isentropic Euler Equations of Mixed Type in the Dark Energy Fluid," Mathematics, MDPI, vol. 12(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhajul, & Mondal, Rakib, 2023. "Wave interaction in isothermal drift-flux model of two-phase flows," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Zhang, Ruigang & Yang, Liangui & Liu, Quansheng & Yin, Xiaojun, 2019. "Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 666-679.
    3. Shagolshem, Sumanta & Bira, B. & Zeidan, D., 2023. "Optimal subalgebras and conservation laws with exact solutions for biological population model," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Karna, Ashutosh Kumar & Satapathy, Purnima, 2023. "Lie symmetry analysis for the Cargo–Leroux model with isentropic perturbation pressure equation of state," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Sil, Subhankar & Raja Sekhar, T., 2023. "Nonclassical potential symmetry analysis and exact solutions for a thin film model of a perfectly soluble anti-surfactant solution," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    6. Lei Fu & Yaodeng Chen & Hongwei Yang, 2019. "Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    7. Manjit Singh & Shou-Fu Tian, 2023. "Lie symmetries, group classification and conserved quantities of dispersionless Manakov–Santini system in (2+1)-dimension," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 312-329, June.
    8. Mandal, Sougata & Sil, Subhankar & Ghosh, Sukhendu, 2024. "Lie symmetries and optimal classifications with certain modal approaches for the three-dimensional gas-dynamical equations," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Rashed, A.S., 2019. "Analysis of (3+1)-dimensional unsteady gas flow using optimal system of Lie symmetries," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 327-346.
    10. Jana, Sumita & Kuila, Sahadeb, 2022. "Exact solution of the flux perturbed Riemann problem for Cargo-LeRoux model in a van der Waals gas," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Faridi, Waqas Ali & Wazwaz, Abdul-Majid & Mostafa, Almetwally M. & Myrzakulov, Ratbay & Umurzakhova, Zhanar, 2024. "The Lie point symmetry criteria and formation of exact analytical solutions for Kairat-II equation: Paul-Painlevé approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. K. Krishnakumar & A. Durga Devi & V. Srinivasan & P. G. L. Leach, 2023. "Optimal system, similarity solution and Painlevé test on generalized modified Camassa-Holm equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 547-557, June.
    13. Sil, Subhankar & Raja Sekhar, T. & Zeidan, Dia, 2020. "Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Shagolshem, Sumanta & Bira, B. & Sil, Subhankar, 2022. "Conservation laws and some new exact solutions for traffic flow model via symmetry analysis," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321007402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.